
VOLUMETRIC MODELING OF NATURAL OBJECTS

WITH COMPACT AND CONSISTENT

REPRESENTATIONS

コンパクトかつ整合性のある表現形式による

自然物のボリューメトリックなモデリング

by

Kenshi Takayama

高山 健志

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 15, 2011

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science

and Technology in Computer Science

Thesis Supervisor: Takeo Igarashi 五十嵐 健夫

Professor of Computer Science

ABSTRACT

Modeling of 3D objects’ internal information, or volumetric modeling, is useful for various

computer graphics applications. For example, volumetric information would enable a rich set

of natural and intuitive interactions with 3D models such as cutting and peeling. Volumetric

information would also be important for applications such as rendering of heterogeneous

translucent objects and simulation of heterogeneous deformable objects. Our goal in this

thesis is to allow the user to interactively create volumetric models of natural objects such

as vegetables, fruit, and organs that contain complex internal structures. In particular, we

aim at providing the user with efficient and intuitive modeling user interfaces while achieving

compact and consistent representations.

Volumetric modeling is fundamentally difficult mainly because of two reasons. First, we

cannot perceive volumetric information directly; hence it is difficult for a user to specify vol-

umetric information directly. Second, computational cost in volumetric modeling can often

become prohibitively large. We propose two general principles to deal with these two diffi-

culties. To deal with the first difficulty, we propose to let the user specify information such

as color and orientation on some surfaces characteristic to the object’s internal structures,

and then let the system propagate such information over the volume (Principle I). To deal

with the second difficulty, we propose to exploit the object’s structural regularity such as

repetitions of structures to achieve compact representations and efficient algorithms (Prin-

ciple II). In order to comprehensively understand different types of structural regularities

represented by volumetric fields, we first classify volumetric fields according to the scale of

structures represented by them and their anisotropy. We further consider appropriate rep-

resentations for each type of volumetric fields, and realize that the raster-based approach is

suited for representing detailed structures while the vector-based approach is suited for rep-

resenting global structures. Based on this analysis, we propose two methods for volumetric

modeling, one in the raster-based approach and the other in the vector-based approach.

For the raster-based approach, we propose a method to represent volumetric objects with

repetitive detailed structures using anisotropic solid textures. The basic idea is to repeatedly

paste patches of an input anisotropic solid texture to a model’s interior according to a user-

specified volumetric orientation field, filling the model with overlapping patches of the solid

texture. We propose efficient sketch-based user interfaces for modeling volumetric orientation

fields. We provide intuitive modeling user interfaces and efficient synthesis algorithms tailored

for different types of solid textures. Our representation is compact because we can reuse the

input solid texture many times and only need to store the texture mapping information

instead of the synthesized color at every 3D point.

For the vector-based approach, we propose a method to represent smooth volumetric color

transitions among global structures using colored 3D surfaces. The basic idea is to represent

a model as a set of colored 3D surfaces, whose volumetric color distribution is obtained

by diffusing the surface colors over the volume. When computing the color diffusion, it

is computationally expensive to globally solve for the entire volumetric color distribution

inside the model at once. Instead, we propose to solve for the diffused colors only locally at

cross-sectional points when the user cuts the model. Our representation is compact because

a volumetric color distribution can be represented using only a sparse set of colored 3D

surfaces without actually storing the diffused color at every 3D point. For the creation of

such colored 3D surfaces, we propose a simple sketch-based 3D modeling user interface that

assumes rotational symmetry in the model’s internal structures.

With our two methods, it is possible to interactively create a number of volumetric models

of various natural objects with complex internal structures using compact and consistent rep-

resentations. These successful results suggest the validity of our two principles for volumetric

modeling which are utilized in both of our two methods. We believe our findings in this thesis

will serve as a foundation for the future development of volumetric modeling techniques.

論文要旨

物体内部の情報のモデリング、すなわちボリューメトリックなモデリングは、コンピュータグ

ラフィックスにおける様々なアプリケーションにおいて有用である。例えばボリューメトリックな

情報によって、三次元モデルに対して切断や皮剥きといった自然で直感的なインタラクションを

行うことが可能になる。またボリューメトリックな情報は、非均質な半透明物体のレンダリング

や非均質な変形体のシミュレーション等のアプリケーションにとって重要である。本博士論文の

目的は、野菜や果物、臓器など複雑な内部構造を含む自然物のボリューメトリックなモデリング

を、ユーザがインタラクティブに行えるようにすることである。特に我々は、効率的で直感的な

モデリングユーザインタフェースを提供しつつ、コンパクトかつ整合性のある表現形式を実現す

ることを目指す。

ボリューメトリックなモデリングは、主に以下の二点において本質的に難しい。第一に、ボリュー

メトリックな情報を人間が直接見ることができないため、ユーザはボリューメトリックな情報を

直接指定することができない。第二に、ボリューメトリックなモデリングにおいてはその計算コ

ストが莫大になることが多い。これらの難しさに対処するために、本論文で我々は以下の二つの

原則を提案する。一つ目の難しさに対処するために、物体内部構造の特徴を表すいくつかのサー

フェス上でユーザに色や方向などの情報を指定させ、その情報をシステムが物体内部のボリュー

ム上に伝播させる、という原則を提案する (原則 1)。二つ目の難しさに対処するために、物体内

部構造における繰返しなどの規則性を利用することで、コンパクトな表現形式と高速なアルゴリ

ズムを実現する、という原則を提案する (原則 2)。物体内部構造の様々な規則性について体系的

に理解するために、まず我々はボリューメトリックな場を、それが表す構造のスケールと異方性

に基づき分類する。さらに、ボリューメトリックな場の各タイプに適した表現形式のアプローチ

について考察し、微細構造を表すにはラスタ的アプローチが、大局的構造を表すにはベクタ的ア

プローチが適していることに着目した。これらの分析を元に、本論文ではラスタ的アプローチと

ベクタ的アプローチのそれぞれについて、上記の原則に基づいたモデリング手法を一つずつ提案

する。

ラスタ的アプローチとして、物体内部の繰返しのある微細構造を、異方性ソリッドテクスチャ

を用いて表現する手法を提案する。基本的な考え方は、入力として与えられた異方性ソリッドテ

クスチャのパッチを、ユーザが指定したボリューメトリックな方向場に沿って物体内部に繰返し

貼り付けることで、物体内部を重なり合うテクスチャパッチで満たす、というものである。我々

はボリューメトリックな方向場を効率的にモデリングするためのユーザインタフェースを提案す

る。またソリッドテクスチャの各タイプに適した直感的なモデリングユーザインタフェースと効

率的な合成アルゴリズムを提供している。提案法では入力のソリッドテクスチャを繰返し再利用

するため、計算結果として各三次元位置における色ではなくテクスチャマッピングの情報だけを

記憶すれば良いので、コンパクトな表現形式を実現できる。

ベクタ的アプローチとして、物体内部の大局的構造の間で滑らかに変化するようなボリューメ

トリックな色分布を、色付き三次元サーフェスを用いて表現する手法を提案する。基本的な考え

方は、モデルを色付き三次元サーフェスの集合として表現し、サーフェスの色をボリューム上で

拡散させることでボリューメトリックな色分布を得る、というものである。色の拡散を計算する

際、モデル内のボリューメトリックな色分布全体を一度に求めようとすると、計算コストが高く

なりすぎるという問題がある。そこで我々は色の拡散を、ユーザがモデルを切断した際の断面上

の各点でのみ局所的に計算する方法を提案する。提案法では、各三次元位置での拡散された色を

記憶することなく、疎な色付き三次元サーフェスの集合のみでボリューメトリックな色分布を表

現できるので、コンパクトな表現形式を実現できる。このような色付き三次元サーフェスを作成

する方法として、我々は内部構造の回転対称性を仮定したシンプルなスケッチベースの三次元モ

デリングユーザインタフェースを提案する。

提案した二手法を用いることで、複雑な内部構造を持つ様々な自然物のボリューメトリックなモ

デルを、コンパクトかつ整合性のある表現形式でインタラクティブに作成することができる。こ

れらの結果は、我々が提案したボリューメトリックなモデリングのための二つの原則の有効性を

示唆している。本研究で得られた知見は、ボリューメトリックなモデリングの技術の今後のさら

なる発展の基礎となることを信じている。

Acknowledgments

First of all, my deepest gratitude goes to my supervisor Takeo Igarashi. He always

encouraged me to explore what I am really interested in, and taught me the right

kind of optimism and criticism essential for conducting a good research. In particular,

I appreciate his thorough training of me for conveying ideas with clear writing and

concise presentation. He also encouraged me to go outside the lab and experience

different environments around the world; I was able to have quite a few opportunities

to visit universities overseas. Starting my graduate study under his supervision is

absolutely the best choice I have ever made in my life. I am also grateful to my

thesis committee members: Katsushi Ikeuchi, Takehsi Naemura, Tomoyuki Nishita,

Reiji Suda, and Shigeo Takahashi, for providing suggestions essential for improving

this thesis.

I thank lab members I met through my five and half years: Daisuke Sakamoto,

Kazutaka Kurihara, Makoto Okabe, Masatomo Kobayashi, Takashi Ijiri, Takeshi Nishida,

Yuki Igarashi, Hideki Todo, HyoJong Shin, Hidehiko Abe, Kaisuke Nakajima, Hirotaka

Ikoma, Toshio Nakamura, Puripant Ruchikachorn, Motoi Washida, Tatsuya Takeda,

Nobuyuki Umetani, Okihide Teramoto, Rapee Suveeranont, Koichiro Honda, Akihito

Sakurai, Shojiro Oku, Sosuke Okamura, Yuji Yasuda, Jun Kato, Andrei Ostanin, Xan-

der Caldwell, Vladimir Alves, Akira Ohgawara, Seung-Tak Noh, Makoto Nakajima,

Ding Chen, Yuji Tanada, Saidi Farid, Shuntaro Hirakawa, Yutaro Hiraoka, Ryo Ka-

jiwara, Yusuke Iida, Takeo Asai, Yuki Koyama, Genki Furumi, Sho Yamauchi, and

Fangzhou Wang, for spending good time with me. In particular, my first SIGGRAPH

paper owes much to Makoto Okabe’s inspiring words. I enjoyed collaborating with

Takashi on his ProcDef project and two projects in the medical field. I also enjoyed

collaborating with Nobuyuki on his project of integrating FEM simulations and in-

teractive shape design interfaces [108]. I spent fun and exciting time right before my

graduation collaborating with Yuki Koyama in submitting his bachelor thesis project

to SIGGRAPH.

I thank international students who visited the lab: Jim Young, Alec Rivers, Flo-

raine Berthouzoz, Ken Christen, Erik Andersen, Lasse Farnung Laursen, and Oliver

Mattausch, for spending good time with me and teaching me English. In particular,

I cannot thank Jim enough for his kindness; he invited me to his sweet home both

in Japan and in Canada quite a few times. He also hosted my visit to University of

Calgary and University of Manitoba. Alec is perhaps the craziest person I have ever

met; he always made all the lab members burst into laughter with his humor. He also

introduced Rob Wang to me who kindly offered me a place to sleep when I visited

Massachusetts Institute of Technology. Erik kindly hosted my visit to University of

Washington.

One of the most important research activity in my graduate study was a visit to

New York University hosted by Olga Sorkine. My SIGGRAPH Asia paper would

have not been possible without her strong encouragement. I also appreciate Andy

Nealan’s collaboration on the project. I thank people I met during the visit: Tino

Weinkauf, Ashish Myles, Nico Pietroni, Yotam Gingold, Adrian Secord, Denis Kovacs,

Matt Grimes, Murphy Stein, Qingnan Zhou, and Alec Jacobson, for spending good

time with me. In particular, I thank Yotam for introducing the awesome Oishi Judo

Club to me which made my stay so fun.

Thanks to Olga’s broad connection with worldwide researchers, I was able to collab-

orate with Tamy Boubekeur, Ryan Schmidt, and Karan Singh, on an exciting project

about geometry editing [102], which is unfortunately not included in this thesis. After

this collaboration, Karan kindly let me visit his DGP group in University of Toronto,

where I spent good time with Nick Kim, Bardia Sadri, Janis Libeks, Noah Lock-

wood, James McCrae, Peter O’Donovan, Cloud Shao, Michael Tao, Jonathan Deber,

Chung-Lin Wen, Koji Yatani, Edy Garfinkiel, Hanieh Bastani, Khai Truong, Aaron

Hertzmann, and Marc Alexa.

I also thank my roommates during these visits: Shigeo and Jun Sakai in New York

and Morgonn Ewen in Toronto for being kind to me.

I was lucky to be able to collaborate with researchers in the medical field: Kazuo

Nakazawa, Ryo Haraguchi, and Takashi Ashihara. They constantly provided me with

many interesting problems in the medical field where computer graphics techniques

can possibly be an effective solution. I also thank people in JST ERATO Igarashi

Design Interface Project: Jun Mitani, Myung Geol Choi, Manfred Lau, and Rubaiat

Habib, for having exciting discussions.

Lastly, I am deeply grateful to my parents Eiki and Ikue Takayama and my brother

Ryo Takayama for their constant support and belief in me.

I have received financial support from various sources. During the first year of my

master’s program, I was supported by Mitou Youth program of Information-technology

Promotion Agency, Japan. My three years of doctoral study have been funded by the

fellowship of Japan Society for the Promotion of Science. My visit to NYU was sup-

ported by JSPS Excellent Young Researcher Overseas Visit Program. I was supported

by Graduate School of Information Science and Technology, the University of Tokyo,

for a few times when I visited various places overseas.

Contents

1 Introduction 1

1.1 Thesis Overview . 5

1.2 Publications . 6

2 Analysis of Volumetric Modeling 8

2.1 Fundamental Difficulties in Volumetric Modeling 8

2.2 Principles for Effective Volumetric Modeling 9

2.2.1 Principle I: Propagating User-Specified Information on the Sur-

faces Through the Volume . 9

2.2.2 Principle II: Exploiting Structural Regularities to Achieve Com-

pact Representations and Fast Algorithms 10

2.3 Classification of Volumetric Fields . 10

2.3.1 Variation level . 11

2.3.2 Anisotropy level . 12

2.4 Representations for Volumetric Fields 13

3 Related Work 16

3.1 Procedural Definition using Mathematical Expressions 16

3.1.1 Discussion . 18

3.2 Synthesis of Cross-Sectional Images from Photographs 18

3.2.1 2D Texture Synthesis on Cross-Sections 18

3.2.2 Morphing of Cross-Sectional Photographs 19

3.2.3 Discussion . 19

3.3 Explicit Modeling of Volumetric Field 20

3.3.1 Raster-Based Approach . 21

3.3.2 Vector-Based Approach . 29

3.4 Other Topics Related to Volumetric Modeling 34

3.4.1 Realistic Rendering of Translucent Materials 34

i

Contents

3.4.2 Volume Visualization . 35

4 User Interfaces for Modeling Volumetric Orientation Fields 37

4.1 Related Work . 38

4.2 Common Machinery: Laplacian Smoothing 42

4.3 Modeling of Volumetric Vector Field 44

4.3.1 User Interface . 44

4.3.2 Algorithm . 44

4.4 Modeling of Volumetric Frame Field 47

4.4.1 User Interface . 47

4.4.2 Algorithm . 50

4.5 Application 1: Electrophysiological Simulation of Heart Ventricles . . 51

4.5.1 Background and Motivation . 51

4.5.2 Results . 52

4.6 Application 2: Active Deformation of Unarticulated Objects 53

4.6.1 Background and Motivation . 53

4.6.2 Algorithm . 54

4.6.3 Results . 56

5 Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures 59

5.1 Overview . 59

5.2 User Interface . 61

5.2.1 Texture Type 0-A . 61

5.2.2 Texture Type 0-B . 61

5.2.3 Texture Type 0-C . 62

5.2.4 Texture Type 1-A . 62

5.2.5 Texture Type 1-B . 63

5.2.6 Manual Pasting of Textures . 64

5.3 Algorithm . 64

5.3.1 Rendering an LST Model . 65

5.3.2 Construction of an LST Model 66

5.4 Results . 72

5.5 Limitations . 74

ii

Contents

6 Vector-Based Method for Representing Smooth Color Transitions

using Colored 3D Surfaces 76

6.1 Related Work on Vector Graphics . 78

6.1.1 Gradient Meshes . 79

6.1.2 Diffusion Curves . 80

6.1.3 Gradient Meshes vs. Diffusion Curves 83

6.1.4 Vector Graphics for Volumes 84

6.2 Diffusion Surfaces . 84

6.2.1 Definition . 84

6.2.2 Algorithm for Generating Cross-Sections 85

6.2.3 Comparison of PMVC and Poisson Diffusion 87

6.3 Creating Diffusion Surfaces . 89

6.3.1 Symmetry-Aware Sketching Interface 89

6.3.2 Modeling of Small Grains . 93

6.3.3 Surface Attributes . 93

6.3.4 Synthesis of Random Variations 95

6.4 Results . 96

6.5 Limitations . 100

7 Conclusion 102

7.1 Summary of Contributions . 102

7.2 Limitations . 103

7.3 Future Directions . 105

7.3.1 Combining Raster-Based and Vector-Based Approaches 105

7.3.2 Use of Scanned Volume Data 106

7.3.3 Physically-Based Volume Rendering 106

7.3.4 Biologically-Motivated Procedural Modeling 107

7.3.5 Techniques for Interacting with Volumetric Models 107

References 109

A Methods for Creating Solid Texture Exemplars 120

A.1 Synthesis of Homogeneous Solid Textures 120

A.2 Synthesis of Layered Solid Textures . 120

A.3 Manual Creation of Solid Textures . 125

iii

Chapter 1

Introduction

In 3D computer graphics, most objects are represented as surface models; the geomet-

ric shape of an object is represented as a manifold surface residing in the 3D space,

and various properties such as color and reflectance are defined on the manifold as

surface textures. There are numerous approaches to creating both surface geome-

tries and surface textures, such as manual approaches of 3D sculpting and painting

interfaces, procedural approaches of using rules and simulations, and measurement-

based approaches using various sensors. While surface modeling still remains difficult,

thanks to the significant advancements in the past decades, surface modeling is widely

accepted by general users and is used to model a variety of things ranging from organic

to man-made objects.

On the other hand, surface modeling is insufficient for several applications where

information about the interior of an object is needed (Figure 1.1). One such application

is interactive cutting of objects such as organ tissues and foodstuff in the context

of virtual training systems, where an appropriate cross-sectional image needs to be

shown immediately when the user cuts a model. Another example is photorealistic

rendering of translucent heterogeneous objects where volumetric information plays an

important role in producing highly realistic rendering results difficult with surface

models. Simulating deformations of complex heterogeneous objects would also require

volumetric information. Modeling of 3D objects’ internal information, or volumetric

modeling, is important for these applications. Volumetric modeling can be viewed as a

task of constructing a volumetric field: a mapping from 3D position to some attribute

values such as color, orientation, or density. The term “solid texture” is often used as

a synonym for a volumetric field.

There are three major approaches to volumetric modeling. The first approach

1

Chapter 1. Introduction

Figure 1.1: Examples of applications in which volumetric information is useful: a vir-

tual training system for cutting foodstuff [73] (left), a film “Ratatouille” [84] (middle),

and simulating deformations of heterogeneous soft tissues [4] (right).

is to use simple mathematical expressions to procedurally define volumetric fields

(Figure 1.2 left). The foremost advantage of this approach is its compactness; only

mathematical expressions need to be stored to represent volumetric fields. On the other

hand, this approach requires devising an appropriate mathematical expression for a

particular modeling target which is a difficult task in general. The second approach is

to synthesize cross-sectional images of a 3D model from 2D photographs (Figure 1.2

middle). This approach allows the user to quickly create a plausible volumetric model

by simply specifying correspondences between 2D photographs and the 3D model’s

cross-sections. On the other hand, this approach often produces unnatural cross-

sectional images for some cutting configurations, because the cross-sectional images

are computed solely based on 2D photographs without considering 3D structures. The

third approach, which we take in this thesis, is to explicitly model a volumetric field

stored on a spatial data structure such as a voxel grid (Figure 1.2 right). This approach

can be used to represent general objects, and is well suited for applications that require

consistent 3D structures such as volume rendering.

Our goal in this thesis is to allow the user to interactively create volumetric models

of natural objects such as vegetables, fruit, organs, and geological structures that con-

tain complex internal structures (Figure 1.3), using efficient modeling interfaces. At

the same time, we aim at retaining consistent 3D structures of volumetric models by

explicitly storing volumetric fields. Volumetric modeling in this approach is difficult

mainly because of two reasons. First, it is difficult for the user to specify volumetric in-

formation directly, since volumetric information cannot be perceived directly. Second,

computational cost can often become prohibitively large, since the entire volumetric

information inside the model needs to be stored and processed explicitly. We propose

two general principles for volumetric modeling to deal with these two difficulties. To

2

2D example

Figure 1.2: Three major approaches to volumetric modeling: procedural definition

using mathematical expressions (left), synthesis of cross-sectional images from pho-

tographs (middle), and explicit modeling of volumetric fields (right).

Figure 1.3: Examples of natural objects that we aim to model volumetrically in this

thesis.

deal with the first difficulty, we propose to let the user specify attribute values (e.g.,

color and orientation) on surfaces characteristic to the object’s internal structures,

and then let the system propagate such values over the volume (Principle I). To deal

with the second difficulty, we propose to exploit the object’s structural regularity such

as repetitions of structures to achieve compact representations and fast algorithms

(Principle II). In order to comprehensively understand different types of structural

regularities represented by volumetric fields, we first classify volumetric fields into sev-

eral types based on the scale of structures represented by them and their anisotropy.

We further consider appropriate representations for different types of volumetric fields,

and realize that volumetric fields representing smaller and larger scale structures can

be well modeled using raster-based and vector-based approaches, respectively. Based

on this analysis, we propose two methods for volumetric modeling, one in the raster-

based approach and the other in the vector-based approach, both of which make use

of the two principles mentioned above.

For the raster-based approach, we propose a method to represent volumetric ob-

3

Chapter 1. Introduction

our raster-based method our vector-based method

Figure 1.4: Our two methods for volumetric modeling, one in the raster-based approach

(left) and the other in the vector-based approach (right).

jects with repetitive detailed structures using anisotropic solid textures. The basic

idea is to repeatedly paste patches of an input anisotropic solid texture to a model’s

interior according to a user-specified volumetric orientation field, filling the model

with overlapping patches of the solid texture (Figure 1.4 left). We propose efficient

sketch-based user interfaces for modeling volumetric orientation fields. We provide

an intuitive modeling user interface and an efficient synthesis algorithm tailored for

each texture type in our classification of solid textures. Our representation is compact

because we can reuse the input solid texture many times and only need to store the

texture mapping information (i.e., 3D texture coordinates), instead of the synthesized

color at every 3D point.

For the vector-based approach, we propose a method to represent smooth volu-

metric color transitions among global structures using colored 3D surfaces. The basic

idea is to represent a model as a set of colored 3D surfaces, whose volumetric color

distribution is obtained by diffusing the surface colors over the volume (Figure 1.4

right). When computing the color diffusion, it is computationally expensive to glob-

ally solve for the entire volumetric color distribution inside the model at once. Instead,

we propose to solve for the diffused colors only locally at cross-sectional points when

the user cuts the model. Our representation is compact because a volumetric color

distribution can be represented using only a sparse set of colored 3D surfaces without

actually storing the diffused color at every 3D point.

With our two methods, it is possible to interactively create a number of volumetric

models of various natural objects with complex internal structures using compact and

consistent representations. These successful results suggest the validity of our two

principles for volumetric modeling which are utilized in both of our two methods. We

believe our findings in this thesis will serve as a foundation for the future development

of volumetric modeling techniques.

4

1.1. Thesis Overview

1.1 Thesis Overview

In Chapter 2, we first detail our two principles for volumetric modeling: propagating

user-specified information on surfaces through the volume (Principle I), and exploiting

structural regularities to achieve compact representations and fast algorithms (Prin-

ciple II). We then present our classification of volumetric fields based on two aspects:

variation level and anisotropy level. Finally, we describe raster-based and vector-based

approaches to volumetric modeling, each of which is suited for modeling different type

of volumetric fields.

In Chapter 3, we first review existing volumetric modeling methods in three ma-

jor approaches: procedural definition using mathematical expressions, synthesis of

cross-sectional images from photographs, and explicit modeling of volumetric infor-

mation. The third approach is further divided into the raster-based and vector-based

approaches, each of which is reviewed. Finally, we also briefly mention two other topics

highly related to volumetric modeling: realistic rendering of translucent materials and

volume visualization.

In Chapter 4, we present two interactive sketch-based interfaces for modeling vol-

umetric orientation fields, which are later used in our raster-based method presented

in Chapter 5 for synthesizing anisotropic solid textures. We also demonstrate two

applications of these user interfaces other than synthesizing solid textures: electro-

physiological simulation of heart ventricles and active deformation of unarticulated

characters.

In Chapter 5, we present our raster-based method to represent volumetric objects

with repetitive detailed structures using anisotropic solid textures. The basic idea is

to repeatedly paste patches of an input anisotropic solid texture to a model’s interior

according to a user-specified volumetric orientation field created using our interfaces

presented in Chapter 4. We provide an intuitive modeling user interface and an efficient

synthesis algorithm tailored for each type of solid textures.

In Chapter 6, we present our vector-based method to represent smooth volumetric

color transitions among global structures using colored 3D surfaces. The basic idea is

to represent a model as a set of colored 3D surfaces, whose volumetric color distribution

is obtained by diffusing the surface colors over the volume. We propose an efficient

algorithm for computing the color diffusion only locally at cross-sectional points. For

the creation of such colored 3D surfaces, we propose a simple sketch-based 3D modeling

user interface that assumes rotational symmetry in the model’s internal structures.

In Chapter 7, we reconfirm how our two principles for volumetric modeling are

5

Chapter 1. Introduction

utilized in our two methods, and verify the validity of the principles. We then discuss

capabilities and limitations of our methods to make clear what kind of objects our

methods can and cannot model. We also present possible ideas for combining the

raster-based and vector-based approaches to enable the hybrid approach. Finally, we

close this thesis by describing areas for future research.

1.2 Publications

Below is a list of publications that compose this thesis:

• Our user interface for modeling volumetric vector field described in Section 4.3

was presented as A Sketch-Based Interface for Modeling Myocardial Fiber Orien-

tation [100] at Smart Graphics 2007 in Kyoto, Japan, in collaboration with Takeo

Igarashi from the University of Tokyo and Ryo Haraguchi and Kazuo Nakazawa

from the National Cardiovascular Center Research Institute.

• Our user interface for modeling volumetric frame field described in Section 4.4

was published as A Sketch-Based Interface for Modeling Myocardial Fiber Orien-

tation that Considers the Layered Structure of the Ventricles [98] in The Journal

of Physiological Sciences, in collaboration with Takashi Ashihara from Shiga

University of Medical Science, Takashi Ijiri and Takeo Igarashi from the Uni-

versity of Tokyo, and Ryo Haraguchi and Kazuo Nakazawa from the National

Cardiovascular Center Research Institute.

• The application of volumetric frame fields to active deformations of unarticulated

characters described in Section 4.6 was presented as ProcDef: Local-to-global

Deformation for Skeleton-free Character Animation [42] at Pacific Graphics 2009

in Jeju, Korea, in collaboration with Takashi Ijiri and Takeo Igarashi from the

University of Tokyo and Hideo Yokota from RIKEN.

• Our raster-based method for volumetric modeling described in Chapter 5 was

presented as Lapped Solid Textures: Filling a Model with Anisotropic Textures [101]

at ACM SIGGRAPH 2008 in Los Angeles, USA, in collaboration with Makoto

Okabe, Takashi Ijiri, and Takeo Igarashi from the University of Tokyo.

• Our vector-based method for volumetric modeling described in Chapter 6 was

presented as Volumetric Modeling with Diffusion Surfaces [103] at ACM SIG-

GRAPH Asia 2010 in Seoul, Korea, in collaboration with Olga Sorkine from New

6

1.2. Publications

York University, Andrew Nealen from Rutgers University, and Takeo Igarashi

from the University of Tokyo.

• Our algorithm for synthesizing layered solid textures described in Appendix A

was presented as Layered Solid Texture Synthesis from a Single 2D Exemplar [99]

at ACM SIGGRAPH 2009 Posters in New Orleans, USA, in collaboration with

Takeo Igarashi from the University of Tokyo.

7

Chapter 2

Analysis of Volumetric Modeling

In this chapter, we describe our high level analysis of volumetric modeling that is

essential to this thesis. We first identify two fundamental difficulties in volumetric

modeling, and then propose two principles to deal with these difficulties. Next, in

order to comprehensively understand different types of structures represented by vol-

umetric fields, we classify volumetric fields into several types based on the scale of

structures represented by them and their anisotropy. We further consider appropriate

representations for different types of volumetric fields containing different scales of

structures, and realize that raster-based and vector-based representations are suited

for modeling smaller and larger scale structures, respectively. Based on this analysis,

in Chapters 5 and 6 we propose our two methods for volumetric modeling, one in

the raster-based approach and the other in the vector-based approach, both of which

make use of our two principles. This analysis is also useful for relating other existing

methods for volumetric modeling to ours, as detailed in Chapter 3.

2.1 Fundamental Difficulties in Volumetric Modeling

Volumetric modeling is fundamentally more difficult than surface modeling, because

the data is distributed three-dimensionally in the case of volumetric modeling whereas

it is distributed two-dimensionally in the case of surface modeling. This can be seen

as one form of the curse of dimensionality in a sense, as new difficulties arise in the

case of volumetric modeling which did not exist in the case of surface modeling. We

identify two fundamental difficulties in volumetric modeling as follows.

The first difficulty is regarding the burden on the user when specifying volumetric

information. Since volumetric information distributed three-dimensionally cannot be

perceived directly by humans, it is difficult for the user to specify volumetric infor-

8

2.2. Principles for Effective Volumetric Modeling

mation directly. One possible way would be to let the user specify sparse constraint

values at arbitrary 3D locations which are then spatially interpolated. This approach

would be, however, still difficult for the user because of the unnecessarily high degree

of freedom in specifying constraint values at arbitrary 3D locations.

The second difficulty is regarding the computational cost when storing and pro-

cessing a volumetric field. For 3D volumes the amount of data storage increases much

more rapidly as the resolution increases than that for 2D images. For example, let us

compare the amount of data needed to store a square-shaped image represented as a

regular pixel grid and a cube-shaped volume represented as a regular voxel grid with

the same number of elements along one coordinate axis. As the number of elements

along the coordinate axis increases from 64 to 256 and 1024, the data size of the image

increases from 12KB to 200KB and 3.1MB, respectively, whereas that of the volume

increases from 79KB to 50MB and 3.2GB, respectively (when a 24bit RGB color is

stored for each element). Note that in addition to storing such a large amount of data,

it is often necessary to process it in various ways such as performing k-nearest neighbor

search (when performing texture synthesis) and applying filter kernels (when solving

partial differential equations). If we naively store and process individual voxels, the

computational cost can easily become prohibitively large as the resolution increases.

2.2 Principles for Effective Volumetric Modeling

In order to deal with the fundamental difficulties in volumetric modeling described

above, we propose two general principles for volumetric modeling as follows.

2.2.1 Principle I: Propagating User-Specified Information on the Surfaces

Through the Volume

Our first principle to deal with the first difficulty of specifying volumetric informa-

tion directly is to let the user specify desired values on surfaces that characterize an

object’s internal structures, which we refer to as characterizing surfaces, and then

have the system propagate such user-specified values on the characterizing surfaces

through the volume (Principle I). Examples of such characterizing surfaces include

the object’s external boundary surface, isosurfaces of the object’s volumetric depth

field if the object has a layered internal structure, and sharp features (i.e., surfaces

across which values change suddenly) in the object’s volumetric field. Because the

dimensionality is reduced from three to two in this approach, it is easy for the user

to specify desired values on the characterizing surfaces using ordinary interfaces such

9

Chapter 2. Analysis of Volumetric Modeling

as sketching and painting. Besides, this approach prevents the user from creating

arbitrary and meaningless volumetric fields by limiting the degree of freedom appro-

priately using the characterizing surfaces. Lastly, the characterizing surfaces are also

useful for modifying the resulting volumetric field to satisfy some application-specific

requirements. For example, when modeling a volumetric vector field inside an object

that has a layered internal structure, we can make the resulting volumetric vector field

be always tangent to the depth layers by projecting the vector to the layer at every

3D location. It would be much more difficult for the user to achieve the same goal

using the approach of specifying arbitrary vectors at arbitrary 3D locations.

2.2.2 Principle II: Exploiting Structural Regularities to Achieve Compact

Representations and Fast Algorithms

Our second principle to deal with the difficulty of rapid increase in computational

cost is to exploit the object’s structural regularity to achieve compact representations

and fast algorithms (Principle II). Examples of such structural regularities include

repetitions of detailed structures, smooth transitions of the volumetric field with a few

sharp features, and symmetries in the object’s internal structures. By following this

principle, we no longer need to store and process individual voxels, leading to compact

representations and fast algorithms.

In order to comprehensively understand structural regularities represented by vol-

umetric fields, in the next section we classify volumetric fields based on the scale of

structures represented by them and their anisotropy.

2.3 Classification of Volumetric Fields

In this section, we propose a classification of volumetric fields in order to provide

a comprehensive understanding of structural regularities represented by volumetric

fields. Our classification is based on two aspects of volumetric fields: variation level

and anisotropy level. (We refer to volumetric fields as solid textures synonymously

here.) This classification forms a basis of our raster-based method presented in Chap-

ter 5 when designing interfaces and algorithms for arranging different types of solid

textures inside 3D models. In addition, this classification is also useful for depict-

ing relationships among other volumetric modeling methods, including existing ones

reviewed in Chapter 3 and our own presented in Chapter 6.

10

2.3. Classification of Volumetric Fields

level 0 level 1 level 2 level 3

Figure 2.1: Variation level of volumetric fields.

Figure 2.2: An example using a kiwi fruit showing how variation levels correspond to

scales of structures. Red wireframes represent the texture volumes, while the orange

arrows represent directions in which texture patterns repeat.

2.3.1 Variation level

The variation level describes how the texture pattern varies spatially (Figure 2.1). A

texture with variation level 0 represents a homogeneous structure; the texture pattern

repeats in all directions in 3D. A texture with variation level 1 represents a layered

structure; there exists a depth direction in the texture along which the texture pattern

varies, while the texture pattern repeats in the directions perpendicular to the depth

direction. A texture with variation level 2 represents a sweeping structure; there exists

a sweeping direction in which the texture pattern repeats, while the texture pattern

varies arbitrarily in the directions perpendicular to the sweeping direction. A texture

with variation level 3 represents an arbitrary structure; the texture pattern varies

arbitrarily in all directions in 3D. The variation level corresponds to the scale of the

structure represented by the texture; the higher the variation level, the larger the scale

of the structure represented by the texture (Figure 2.2).

11

Chapter 2. Analysis of Volumetric Modeling

type 0-A type 0-B type 0-C

Figure 2.3: Three types of homogeneous (i.e., variation level 0) textures with different

levels of anisotropy. The distinguishability of the coordinate axes of the space of

repetition is depicted using colors.

2.3.2 Anisotropy level

For textures with variation levels 0 and 1, texture patterns repeat three- and two-

dimensionally, respectively. We refer to such a space over which the texture pattern

can repeat as the space of repetition. The anisotropy level, the other aspect of our

classification, describes whether the coordinate axes of the space of repetition are

distinguishable from each other.

For textures with variation level 0, there exist three types of textures depending on

the anisotropy level: type 0-A which does not distinguish any of the three coordinate

axes of the space of repetition, type 0-B which distinguishes one coordinate axis from

the other two, and type 0-C which distinguishes all the three coordinate axes (Figure

2.3). A texture of type 0-A can be arranged in the volume without any orientation

information, while a texture of types 0-B and 0-C need a volumetric vector field and a

volumetric frame field (i.e., set of three vector fields that are orthogonal to each other

everywhere, see Chapter 4), respectively, in order to be arranged in the volume.

For textures with variation level 1, there exist two types of textures depending on

the anisotropy level: type 1-A which does not distinguish the two coordinate axes of

the space of repetition, and type 1-B which does distinguish them (Figure 2.4). A

texture with variation level 1 needs a volumetric depth field in order to be arranged in

the volume. A texture of type 1-B additionally needs another volumetric vector field

which is orthogonal to the depth direction everywhere, in order to be arranged in the

volume.

The anisotropy level is undefined for textures with variation levels 2 and 3, since

12

2.4. Representations for Volumetric Fields

type 1-A type 1-B

Figure 2.4: Two types of layered (i.e., variation level 1) textures with different levels

of anisotropy.

structures in textures with variation level 2 repeat only one-dimensionally and struc-

tures in textures with variation level 3 does not repeat in any directions. In summary,

our classification categorizes solid textures into seven types as 0-A, 0-B, 0-C, 1-A, 1-B,

2, and 3 (Figure 2.5). We consider appropriate representations for different types of

solid textures in the next section.

2.4 Representations for Volumetric Fields

Different types of volumetric fields can be better modeled using different representa-

tions. In this section, we consider which representation is suited to model which type

of volumetric fields. For this, we borrow ideas from the well-known raster-based and

vector-based representations for 2D images. The raster-based representation stores an

image as a regular pixel grid holding individual pixel values, while the vector-based

representation stores an image as analytic information about the image content’s ge-

ometric structures (e.g., region boundaries) along with smoothly varying colors. It is

also well known that the raster-based representation is suited for encoding small-scale

structures and noise-like details while the vector-based representation is suited for en-

coding large-scale structures and smooth color transitions with sharp color boundaries

(Figure 2.6).

Analogous to the case of 2D images, we can also consider raster-based and vector-

based approaches for representing 3D volumes. In our classification, volumetric fields

with smaller variation levels represent smaller scale structures, and therefore they can

be modeled well using raster-based approaches. Similarly, volumetric fields with larger

variation levels represent larger scale structures, and therefore they can be modeled

13

Chapter 2. Analysis of Volumetric Modeling

type 0-A type 0-B type 0-C

type 1-A type 1-B

type 2

type 3

Anisotropy level

Va
ria

tio
n

le
ve

l

Figure 2.5: Seven types of solid textures in our classification.

Figure 2.6: The raster-based (left) and vector-based (right) representations for 2D

images.

14

2.4. Representations for Volumetric Fields

well using vector-based approaches. From this perspective, we can categorize existing

volumetric modeling methods into raster-based and vector-based approaches, as we

detail in Chapter 3. In this thesis we present two methods for volumetric modeling,

one in the raster-based approach and the other in the vector-based approach.

Our raster-based method presented in Chapter 5 arranges textures with variation

levels 0 and 1 inside 3D models with spatially-varying texture orientation and scale to

produce textures of types 2 and 3. In Chapter 4, we present sketch-based interfaces for

modeling volumetric orientation fields needed for arranging textures of types 0-B, 0-C,

and 1-B, as well as a painting interface for modeling volumetric depth fields needed

for arranging textures of types 1-A and 1-B. Our method is general enough to handle

textures of type 2. Such textures, however, can only be arranged one dimensionally,

limiting our method’s advantage of compactness by reusing the same texture data.

Besides, textures of type 2 would be more difficult to create than textures with varia-

tion levels 0 and 1 because such textures involve larger scale structures. We therefore

chose not to support textures of type 2 in our method.

Our vector-based method presented in Chapter 6 can be regarded as a method for

modeling textures of type 3, similar to other vector-based methods [15, 111, 110]. In

addition, our 3D modeling user interface that assumes rotational symmetry can be

regarded as an interface for creating textures of type 2 whose structures repeat along

the circumferential direction around the axis of rotational symmetry. Our method

is not well suited for creating textures with variation levels 0 and 1 that represent

detailed structures, since numerous tiny surfaces required for representing such de-

tailed structures would limit our method’s advantage of compactness by representing

a volumetric color distribution with a sparse set of colored 3D surfaces.

15

Chapter 3

Related Work

In this chapter, we review existing methods for volumetric modeling such that this

thesis can be placed in an appropriate context. There are three approaches to volu-

metric modeling: procedural definition using mathematical expressions, synthesis of

cross-sectional images from photographs, and explicit modeling of volumetric informa-

tion. The third approach, which we take in this thesis, can be further divided into the

raster-based approach and the vector-based approach. We review existing methods in

each of these approaches and discuss their relations to this thesis. Lastly, we also men-

tion other topics relevant to volumetric modeling: realistic rendering of translucent

materials and volume visualization.

Pietroni et al. [82] presented a survey on solid texture synthesis which has some

overlap with this chapter, while we categorize existing methods for volumetric model-

ing in our own manner.

3.1 Procedural Definition using Mathematical Expressions

In the early time of computer graphics, researchers first explored the approach of pro-

cedural definition using mathematical expressions for volumetric modeling. In 1985,

Peachey [79] and Perlin [81] independently introduced the very first idea of volumetric

modeling where a combination of a scalar function in 3D space and a color map defines

a volumetric color distribution.

Specifically, their idea is to define a scalar function f : R3 7→ R in 3D space and a

color map colormap : R 7→ C with C being a space of color vector (e.g., RGB vector), so

that their combination colormap ◦ f : R3 7→ C defines a volumetric color distribution.

They named this approach “solid texturing”, a common term now, and demonstrated

that it is very well suited for achieving “carved-out” effects (i.e., as if an object is

16

3.1. Procedural Definition using Mathematical Expressions

Figure 3.1: Examples of solid texturing demonstrated by Peachey (left), Perlin (mid-

dle), and Worley (right).

carved out of a certain material), as shown in Figure 3.1.

One significant invention by Perlin [81] is a noise function noise : R3 7→ R that

outputs a random noise value at an arbitrary 3D position, which can be used effectively

to simulate natural variations in the texture patterns. This noise function is designed

to have a nice “band-limited” property (i.e., the magnitude of its frequency power

spectrum is roughly limited within a certain range of radius), allowing us to sum up

spatially scaled versions of the noise with different weights to define a noise that has

a specific appearance desired by the artist. For example, a turbulence-like noise can

be defined as

turbulence(x, y, z) =
N∑
i=0

noise(2ix, 2iy, 2iz)

2i
.

Perlin demonstrated various impressive solid texturing examples by combining noise

functions and some other basic math functions. For example, the solid texture used

in the marble vase model in Figure 3.1 (middle) is defined as:

marble(x, y, z) = colormap(sin(x+ turbulence(x, y, z))).

Note that there have been continuous efforts on improving noise generation algorithms

since Perlin’s invention, with a notable recent development of Gabor noise by Lagae

et al. in 2009 [56] which allows us to produce a wide variety of different texture

patterns from just a few parameters. For more details about various noise generation

algorithms, we refer the reader to a survey by Lagae et al [55].

There are a few different ways to define procedural solid textures other than com-

bining noise and math functions, including cellular texturing method by Worley [116].

The reader may refer to a book by Ebert et al. [25] which covers various methods for

procedural texture design.

17

Chapter 3. Related Work

3.1.1 Discussion

The foremost advantage of this approach is its compactness; only mathematical ex-

pressions need to be stored to represent the volume. In addition, once an appropriate

mathematical expression is found for a particular modeling target, often that mathe-

matical expression is easy to implement and requires low computational cost, making

this approach suited for practical applications such as games and films.

On the other hand, this approach requires devising an appropriate mathematical

expression for a particular modeling target which is a difficult task in general. Besides,

it would be challenging, if not impossible, to represent general volumetric objects only

using combinations of math and other functions.

3.2 Synthesis of Cross-Sectional Images from Photographs

The second approach to volumetric modeling is synthesis of plausible cross-sectional

images based on user-specified correspondences between the 3D model and 2D cross-

sectional photographs. This approach seems to have received relatively less attention

compared to other approaches, and only two methods have been proposed in this

approach to our knowledge.

3.2.1 2D Texture Synthesis on Cross-Sections

Owada et al. [76] proposed to mimic the illusion of a volumetric model without actually

constructing large volumetric data by synthesizing a plausible 2D texture image on

a cross-section of a 3D model when the user cuts the model. Figure 3.2 shows an

overview of their approach. Starting with a 2D source texture and a 3D surface model,

the user specifies control maps for both the source texture and a cross-section of the 3D

model, indicating the relationship between the source texture and the 3D model. Note

that information stored in the control map and the way to specify it vary depending

on the type of texture (e.g., when creating layered textures, the control map stores

a scalar depth field which is specified by painting). Given these control maps, the

system synthesizes a plausible 2D texture on the cross-section using modified versions

of standard example-based 2D texture synthesis algorithms [114, 106]. Note that with

respect to our classification of solid textures, their method conceptually considered

textures of types 0-A, 0-B, and 1-A, though not being based on using solid textures.

18

3.2. Synthesis of Cross-Sectional Images from Photographs

Reference texture &
user scribbles

Reference control map
Cut by the user

Target control map
on cross-section

Synthesized texture
on cross-section

Figure 3.2: Overview of the volumetric illustration system by Owada et al, [76].

3.2.2 Morphing of Cross-Sectional Photographs

Pietroni et al. [83] proposed to perform morphing between a set of cross-sectional

photographs of an object and paste the morphed image onto the cross-section of a 3D

model. The input to their system consists of a set of cross-sectional photographs and

a 3D surface mesh representing the overall shape of the object. The only required

user interaction is to arrange the set of cross-sectional photographs in the 3D space

appropriately (Figure 3.3 left). Then the system can compute a color for an arbitrary

3D point by projecting it onto the user-specified cross-sectional image planes and

blending the colors of the projected image pixels with different weights according to

the distances from the planes (Figure 3.3 middle left).

3.2.3 Discussion

This approach has mainly two advantages. First, it allows the user to quickly cre-

ate a plausible volumetric model by simply specifying correspondences between 2D

photographs and the 3D model’s cross-sections. Second, the representations in this

approach are both compact, because only the set of 2D photographs need to be stored

to represent a volumetric model.

The downside of this approach is that unnatural cross-sectional images often result

19

Chapter 3. Related Work

Figure 3.3: The approach of Pietroni et al. [83] of morphing cross-sectional pho-

tographs.

Figure 3.4: Unnatural cross-sectional images produced by Owada et al.’s method (left)

and Pietroni et al.’s method (right).

for some cutting configurations (Figure 3.4), because the cross-sectional images are

computed solely based on 2D photographs without considering 3D structures. For

the similar reason, this approach is also not suited for applications such as volume

rendering that require consistent volumetric information.

3.3 Explicit Modeling of Volumetric Field

The third approach, which we take in this thesis, is to explicitly store a volumetric

field on a spatial data structure such as a voxel grid. This approach can be used to

represent general objects, and is well suited for applications that require consistent

3D structures such as volume rendering. As mentioned earlier, two approaches exist

for representing volumetric fields: raster-based approach and vector-based approach.

The raster-based approach represents a field by storing individual field values on a

20

3.3. Explicit Modeling of Volumetric Field

regular lattice, while the vector-based approach represents a field by storing analytic

information about the field’s geometric structures (e.g., region boundaries) along with

smoothly varying field values. The raster-based approach is suited for representing

detailed structures, while the vector-based approach is suited for representing global

structures. In this thesis we present two methods for volumetric modeling, one in the

raster-based approach and the other in the vector-based approach. Here we review

existing methods in each of the raster-based and vector-based approaches, and discuss

the differences of our methods from these existing methods.

3.3.1 Raster-Based Approach

The raster-based approach mainly consists of methods for synthesizing a bitmap solid

texture (i.e., 3D volume stored on a voxel grid) from 2D images. The goal is to take

a few 2D exemplar images and synthesize a solid texture such that its cross-sections

in certain orientations appear similar to the input 2D exemplar images everywhere.

Parametric methods were explored in the early period, while nonparametric methods

were later explored to overcome the limitations of parametric methods. The reader

may refer to a survey by Wei et al. [113] that extensively covers various techniques of

example-based texture synthesis for both 2D and 3D. We also mention an approach

of manually painting on solid textures using colored particles.

Parametric Solid Texture Synthesis

In the parametric approach, a certain underlying computational model that can gen-

erate a certain class of solid textures is assumed, and the goal is to estimate the

parameters for such a model based on an input exemplar image so that the output

solid texture visually matches with the exemplar image. Statistical techniques are

often used for this parameter estimation.

Pyramid Decomposition and Histogram Matching: Heeger and Bergen [37]

presented a method for parametric texture synthesis using two statistical techniques:

pyramid decomposition and histogram matching, which are applicable to both 2D

images and 3D volumes.

In pyramid decomposition, the original image I0 is first downsampled with a factor

of 1
2 as

I1 = downsample(I0),

21

Chapter 3. Related Work

which is the low-pass component of I0. The high-pass component of I0 is obtained by

subtracting the low-pass component upsampled with a factor of 2 as

H0 = I0 − upsample(I1).

This decomposition is repeated recursively, resulting in a sequence of H0, H1, · · · ,HN

and a leftover low-pass component IN+1 at the coarsest level. Note that the original

image I0 can be trivially reconstructed by reversing the decomposition procedure.

Histogram matching, the other key technique of their method, transforms the col-

ors in the synthesis image so that its color histogram matches that of the exemplar

image. To do this, for each color channel, histograms are constructed for both of the

exemplar and the synthesis images as histogramE and histogramS , respectively (i.e.,

histogramE(c) counts the number of pixels in the exemplar image whose values equal

to c). Next, the cumulative distribution function (CDF) for the exemplar image is

computed as

cdfE(c) =
∑
c′≤c

histogramE(c
′)

and is then normalized such that cdfE(cmax) = 1, where cmax is the possible maximum

color value (e.g., 255 when using 8 bit integer for each channel). The CDF for the

synthesis image cdfS is computed similarly. Then, the histogram matching operation

replaces the color of each pixel in the synthesis image using the color mapping function

cdf−1
E ◦ cdfS .

With these two techniques at hand, Heeger and Bergen’s texture synthesis method

starts by generating a 3D volume of white noise, then applying histogram matching

to the pair of the exemplar image and the synthesis volume. Then, the pyramid

decomposition is performed on both the exemplar image and the synthesis volume,

followed by histogram matching applied to the pairs of corresponding components in

the exemplar pyramid and the synthesis pyramid. The output solid texture is finally

reconstructed from the synthesis pyramid. Figure 3.5 (left) shows one of their results.

Spectral Analysis: Ghazanfarpour and Dischler [34] proposed another parametric

texture synthesis method based on spectral analysis of the input exemplar image. The

input exemplar image I(x, y) is first converted into the power spectrum S(fx, fy) in

the frequency domain using Fourier transform. Next, a new randomized image I ′(x, y)

is obtained as a sum of modulated cosine waves corresponding to frequencies whose

amplitudes in S(fx, fy) are larger than a threshold. Finally, an output solid texture

22

3.3. Explicit Modeling of Volumetric Field

Figure 3.5: Results of parametric solid texture synthesis techniques demonstrated by

Heeger and Bergen (left) [37], Ghazanfarpour and Dischler (middle) [34], and Jagnow

et al. (right) [43].

V (x, y, z) is obtained as

V (x, y, z) = I ′(x+ p(x, y, z), y + p(x, y, z)),

where p(x, y, z) = whitenoise(x, y, z) ⊗ h(x, y) is a random perturbation function

defined as a convolution of a white noise with a 2D filter kernel h(x, y) which is

determined somehow based on S(fx, fy). Figure 3.5 (middle) shows one of their results.

The same authors later extended the above method in several ways, such as spec-

tral analysis on multiple views [35] and combining spectral analysis and histogram

matching [20]. We refer the reader to their survey [19] for more details.

Stereological Techniques: Jagnow et al. [43] proposed stereological techniques for

solid textures, aiming specifically at generating volumetric materials consisting of ag-

gregate particles and binding media, such as concrete, asphalt, and sponge. Assuming

that the 3D particle shapes are known but their relative sizes (i.e., uniform scaling) are

unknown, their goal is to estimate the unknown distribution of particle sizes in the 3D

volume based on an input 2D cross-sectional image. This estimation is achieved based

on theories in stereology, a field that studies the relationship between 3D structures

and their 2D cross-sections.

In their algorithm, the output 3D volume and the input 2D image are both charac-

terized by histograms of the sizes of particles contained within a unit space, denoted

by NV (i) and NA(i), respectively, with i referring to an index of the histogram bin.

Here, NA is easily obtained by measuring the areas of particle cross-sections in the 2D

image, and NV is the unknown parameter of the underlying texture model that their

algorithm seeks for.

23

Chapter 3. Related Work

Figure 3.6: Examples of stochastic textures (left, middle left) and structured textures

(middle right, right).

According to stereology, we can relate NV to NA as

NA(i) =
∑
j

kijNV (j).

Intuitively, kij corresponds to the probability that a 3D particle with the j-th size in

the 3D volume appears as a 2D particle profile with the i-th size in the 2D image.

This matrix K = (kij) is specific to the individual particle shape which is known, and

it is estimated using a Monte-Carlo approach where the 3D particle is cut at random

positions and orientations and its cross-sectional area is measured for numerous times.

Once K is obtained, NV can be computed as NV = K−1NA.

In the final synthesis step, the system iteratively generates each individual 3D

particle by first choosing its size according to NV , and then randomly choosing its

position and orientation. Collisions among particles are resolved using simulated an-

nealing. Colors and texture details inside the particles and the binding medium are

generated using Heeger and Bergen’s technique [37]. Figure 3.5 (right) shows one of

their results.

Nonparametric Solid Texture Synthesis

An inherent limitation of parametric methods is that they are successful only for

a limited range of materials. In particular, approaches that rely on general image

statistics [37, 34] are only successful with stochastic textures (i.e., textures with small-

scale noise-like details) but not with structured textures (i.e., textures with macro-scale

features). Examples of these two classes of textures are shown in Figure 3.6.

To deal with more general types of solid textures including structured textures,

researchers started to explore nonparametric methods later. In a nonparametric ap-

proach, the system does not assume any underlying global texture models, and syn-

thesizes textures based on the information about local texture neighborhoods.

24

3.3. Explicit Modeling of Volumetric Field

Figure 3.7: Notations used in nonparametric solid texture synthesis using local neigh-

borhood matching [112, 53].

Local Neighborhood Matching: In 2003, Wei [112] proposed for the first time a

nonparametric solid texture synthesis technique based on local neighborhood match-

ing. The basic idea is to formulate the solid texture synthesis as an energy minimization

problem. Given as input a set of 2D texture exemplars IX , IY , and IZ which specify

the desired appearance of the cross-sections of the output volume perpendicular to the

X-, Y -, and Z-axes, respectively, the goal is to find a solid texture V that minimizes

the following energy:

E(V) =
∑
v∈V

∑
D∈{X,Y,Z}

min
pD∈ID

∥ND(v, V)−N(pD, ID)∥2

where v ∈ V is a voxel of V , pD ∈ ID is a pixel of ID, ND(v, V) is a neighborhood

vector formed by concatenating all the voxel values contained in an n by n square

slice of V perpendicular to the D-axis and centered at v (with n being a user-exposed

parameter), and N(pD, ID) is a neighborhood vector formed similarly but from ID.

Figure 3.7 illustrates these quantities visually. Note that this energy definition involves

searching of the pixel pD with the nearest neighborhood for each voxel v.

To minimize this energy, Wei proposed an iterative procedure consisting of two

interleaved phases: search and update. In the search phase, the above search is simply

carried out based on the current synthesis result, which is the most computationally

expensive part of the entire procedure. In the update phase, the energy is decreased by

replacing the color of each voxel v with the average color of pX , pY , and pZ . Although

the above idea is simple and seemingly promising, unfortunately, Wei could only obtain

some interesting but not satisfactory results (Figure 3.8 left).

25

Chapter 3. Related Work

Figure 3.8: Comparison of solid texture synthesis algorithms by Wei (left) and Kopf

et al. (middle left), and two examples of applying Kopf et al.’s resulting solid textures

to 3D models (middle right, right).

In 2007, Kopf et al. [53] reformulated the above idea using the texture optimization

framework [54] where the update phase is modified as weighted averaging of all over-

lapping neighborhood pixel colors, and introduced a scheme of adjusting these weights

such that the color histogram of the synthesis volume becomes similar to that of the

exemplars, which is inspired by Heeger and Bergen’s technique [37]. These modifica-

tions made it possible to generate high quality solid textures of various types (Figure

3.8).

While producing stunning results, Kopf et al.’s technique takes a long time to

compute and also requires a huge amount of storage especially when synthesizing high

resolution solid textures. To address these problems, Dong et al. [21] proposed a

significantly faster solid texture synthesis technique by reducing the search space and

employing the GPU’s parallelism, which is inspired by a previous fast 2D texture

synthesis technique [59]. One notable advantage of Dong et al.’s technique is that

it enables on-the-fly evaluation, an ability to query a synthesized color value at an

arbitrary 3D position without synthesizing the entire color volume. This means that

we only need to maintain compact information needed for the synthesis, and we do

not need to store the entire color volume to texture a given 3D geometry. Note that

this advantage of data compactness has previously been exclusively attributed to the

procedural definitions of volumes as in Section 3.1.

Aura Matrices: Slightly before Kopf et al.’s work, Qin and Yang [87] presented

another different technique for solid texture synthesis using Basic Gray Level Aura

26

3.3. Explicit Modeling of Volumetric Field

Matrices (BGLAMs). Their technique assumes that the color channels of the input

image can be decorrelated, and it works separately on each grayscale image as follows.

BGLAMs of a 2D image I(x, y) are a set of matrices
{
A(d) =

(
a
(d)
ij

)}
where d ∈

{−n, · · · ,−1, 0, 1, · · · , n}2 \ {(0, 0)} is a neighborhood displacement vector (with n

being a user-exposed parameter), and each a
(d)
ij is defined as the number of pixel pairs

p and q = p+ d in the image that satisfies I(p) = i and I(q) = j. The matrix A(d)

is thus m by m when the range of the grayscale value in the image is discretized into

m levels, which is why it is necessary to work with each color channel separately.

An important property of BGLAMs is that two sets of BGLAMs computed from

two images are identical if and only if the two images are identical. Using BGLAMs as

a way to measure the similarity between two images, the algorithm synthesizes solid

textures in an iterative fashion, where the grayscale value of each voxel is updated

such that the BGLAMs computed on the volume slice get closer to the BGLAMs of

the input 2D cross-sectional images.

The algorithm often produces color bleeding artifacts because the assumption that

the color channels can be decorrelated does not always hold. In addition, it often fails

to deal with structured textures where Kopf et al.’s method performs much better.

Manual Painting Interface for Volumes

Owada et al. [74] presented a sketch-based interface for directly painting colors onto

the voxel grid. Their goal is to develop an easy-to-use interface for creating volumetric

contents from scratch. The basic idea is to create 3D structures and textures only

by 2D sketching on cross-sections of the model. Given a surface mesh representing

the overall shape of the model as input, the modeling process consists of two steps:

decomposition of the interior regions and distributing particles within each region.

To decompose regions, the user draws a 2D stroke on the cross-section to specify

the shape of the region boundary. As 2D stroke information is generally not enough

for determining 3D shape, some additional information or assumptions are needed to

obtain 3D shape from a 2D stroke. To deal with this issue, they performed a user

study on the human perception about the relationship between 2D profile curves on

cross-sections and their corresponding 3D shapes, and developed a set of heuristics for

determining 3D shapes from 2D strokes based on the study result (Figure 3.9).

The next step of distributing particles is achieved in an example-based manner.

The user first manually puts a few particles on the cross-section as examples. The

system then infers information about how these example particles are arranged (i.e.,

27

Chapter 3. Related Work

Figure 3.9: Two of the heuristics for generating a 3D surface from a 2D sketch (left)

on a cross-section used in Owada et al.’s volume painting interface [74]: sweep-based

(middle) and extrusion-based (right).

Figure 3.10: Examples of distributing particles according to example particle distri-

butions given by the user.

density, orientation, and distance from the boundaries), and synthesizes new particles

in the 3D space accordingly (Figure 3.10). Figure 3.11 shows some of the volumetric

models created using their volume painting interface.

Discussion

While some of the aforementioned solid texture synthesis methods can synthesize ho-

mogeneous anisotropic solid textures corresponding to texture types of 0-A, 0-B, and

0-C in our classification of solid textures, orientation and scale of the texture are

assumed to be uniform over the volume. In addition, since these methods synthe-

Figure 3.11: Some of the results in Owada et al.’s volume painting approach [74].

28

3.3. Explicit Modeling of Volumetric Field

size individual voxels over the entire volume (except for Dong et al.’s method [21]),

computational cost becomes prohibitively large when synthesizing a high resolution

solid texture. In contrast, our raster-based method presented in Chapter 5 can han-

dle spatially varying texture orientation and scale. Besides, our method requires low

computational cost even when synthesizing a high resolution solid texture, since our

method is can reuse the same texture data over and over again.

Owada et al.’s manual painting interface for volumes [74] is limited in expressive-

ness, as the system only supports constant colored particles and region fills. We believe

that smooth volumetric color transitions are important when creating interesting vol-

umetric data manually, and our vector-based method presented in Chapter 6 is better

suited for from-scratch creation of volumetric data.

3.3.2 Vector-Based Approach

It is only recently that the vector-based approach to volumetric modeling started to

receive much attention, and so far there exist three methods in this approach to our

knowledge. They are all based on dividing the object’s interior into separate regions

and specifying volumetric color distribution inside each region in several ways such

as using predefined solid textures, procedural descriptions, or radial basis functions.

One method can define only layered regions by using distances from input 3D surfaces,

while the other two methods can define more general shapes of regions by using signed

distance functions (SDFs) that divide 3D spaces into two by their signs. Note that

these vector-based methods can model global and arbitrary structures, and thus can

be regarded as modeling textures of type 3 in our classification of solid textures.

Layer-Based Procedural Authoring

Cutler et al. presented the first method of the vector-based approach to volumetric

modeling in 2002 [15] (although not described as such at that time). Their basic idea

is to assume that the regions are arranged in a layered manner, and to define such

layers based on some existing 3D surfaces. Specifically, the user can define layers with

desired thicknesses around some existing 3D surfaces and assign a material to each

layer. The user can procedurally define both the layer shapes and their materials

using a scripting language. Listing 3.1 and Figure 3.12 show a simple example script

code and its resulting model, respectively. The user can define more complicated layer

shapes by using advanced features in the language such as combining different shapes

and perturbing layer thicknesses.

29

Chapter 3. Related Work

STRIPED_CANDY = volume {

distance_field = surface_mesh {

file = candy.obj }

layers = {

interior_layer {

material = CHOCOLATE

thickness = fill }

exterior_layer {

material = WHITE_CHOCOLATE

thickness = 0.10 }

exterior_layer {

material = STRIPED_CHOCOLATE

thickness = 0.05 } } }

Listing 3.1: An example script code describing a simple chocolate candy model shown

in Figure 3.12. Definitions for materials are omitted.

Figure 3.12: A volumetric chocolate candy model resulting from the script code in

Listing 3.1.

Since their main goal is to use the resulting volumetric models with physics sim-

ulations, they also propose an algorithm for tessellating the regions into tetrahedral

meshes and techniques to integrate simulation operators into their scripting language.

30

3.3. Explicit Modeling of Volumetric Field

Figure 3.13: One of Wang et al.’s results of volume vectorization [111]. When ex-

tremely zoomed in, the vector solid texture representation still retains the sharpness

of region boundaries (middle), whereas the bitmap solid texture representation exhibits

severe blurring artifacts (right).

Volume Vectorization

Raster-based solid texture synthesis methods described in Section 3.3.1 generate bitmap

solid textures as their final output. One fundamental problem with bitmap solid tex-

tures is that distinct visual features (e.g., profile of pebbles, boundaries between brick

and mortar, etc.) cannot remain sharp when zoomed in, resulting in blurry artifacts.

Simply increasing the texture resolution to alleviate this problem would obviously

require a prohibitively large amount of memory.

Volume vectorization [111] proposed by Wang et al. specifically tackles this prob-

lem; it converts an input bitmap solid texture into a vector solid texture that retains

sharp features when zoomed in while requiring compact storage. The basic idea is

to represent the feature boundaries as the isosurfaces of an SDF, and approximate

the color variation within each closed regions using radial basis functions whose pa-

rameters are determined by nonlinear optimization. Figure 3.13 shows one of their

vectorization results.

Because their representation handles information about geometry and color sepa-

rately, it is also possible to do some interesting editing operations that are difficult for

bitmap solid textures. For example, they successfully generate self-similar fractal-like

boundaries by evaluating the SDF recursively (Figure 3.14).

Multiscale Modeling

An obvious limitation of Cutler et al.’s approach [15] is that it assumes all the regions

are arranged in a layered manner, which is not always the case for general objects.

31

Chapter 3. Related Work

Figure 3.14: Examples of vector solid textures with fractal-like boundaries achieved

by evaluating SDFs recursively.

mat0 mat1 mat2 mat3

Figure 3.15: A visualization of SDF tree data structure specified in Listing 3.2 (left)

and its graphical interpretation in 2D (right). Both of two disc-shaped SDFs D1 and

D2 take positive (negative) values outside (inside) the disk.

Wang et al. [110] recently presented a new approach to authoring volumetric models

that removes this restriction and enables the complexity that has been almost impos-

sible previously. They address two problems specifically: (1) how to define separate

regions arranged in arbitrary and complicated ways (not necessarily layered) in a con-

cise manner, and (2) how to represent multi-scale structures in the objects (e.g., human

skin consisting of hair, fat cells, and cell nucleus) compactly and efficiently.

To deal with the first problem, they propose a data structure called SDF tree which

can be considered as a generalization of binary space partitioning tree. In an SDF tree,

each intermediate node is associated with a certain spatial region (e.g., the root node

is associated with the entire 3D space) and an SDF which divides the region into two

disjoint sub-regions based on its sign. Thus, each intermediate node has two child

nodes, corresponding to the positive and negative regions of the SDF. Each child node

can be set as an intermediate node further dividing its space, or as a leaf node by

assigning a specific material type that fills the space. A unique advantage of SDF tree

is that it can define multiple disjoint regions simultaneously and concisely. Listing 3.2

shows a simple example code of their XML-based scripting language defining an SDF

tree, and Figure 3.15 shows its corresponding graphical interpretation in 2D.

32

3.3. Explicit Modeling of Volumetric Field

<OBJECT name="example">

<SDF name="D1" file="D1.sdf" >

<POSITIVE >

<SDF name="D2" file="D2.sdf">

<POSITIVE region="mat0"/ >

<NEGATIVE region="mat1"/ >

</SDF>

</POSITIVE >

<NEGATIVE >

<SDF name="D2" file="D2.sdf">

<POSITIVE region="mat2"/ >

<NEGATIVE region="mat3"/ >

</SDF>

</NEGATIVE >

</SDF >

</OBJECT>

Listing 3.2: An example script code describing an SDF tree. SDFs are stored in a

coarse raster image separately as *.sdf files.

To represent multi-scale structures, they propose to link multiple SDF trees rep-

resenting components in different scales. Specifically, an instance of an SDF tree

representing a smaller scale component, with some affine transformations, can be em-

bedded into a leaf node of an SDF tree representing a larger scale component. This

allows us to represent multi-scale components very compactly because the same data

can be reused many times. This object instancing can be specified either manually

using a simple GUI or procedurally using algorithms such as Poisson disk sampling

with some target density maps. Figure 3.16 shows one of their results. Such complex

volumetric models containing components in multiple scales would have required a

huge amount of storage to model previously.

Discussion

While all of the above methods partition the object’s interior into separate regions, we

believe that not all objects can be clearly partitioned into separate regions, which is

especially the case for objects with sharp and soft color transitions such as kiwi fruit,

33

Chapter 3. Related Work

Figure 3.16: A multiscale volumetric model of human skin created using Wang et al.’s

approach [110].

Figure 3.17: Examples of objects that cannot necessarily be partitioned into separate

regions.

apple, and persimmon (Figure 3.17). In contrast, our vector-based method presented

in Chapter 6 does not require partitioning the object’s interior into separate regions,

and allows open-ended boundaries to be placed at arbitrary locations inside the object.

In addition, our method allows the user to specify the volumetric color distribution

inside a model by painting colors on 3D surfaces, which we believe is more intuitive

than placing RBF kernels in 3D space as in Wang et al.’s method [110].

3.4 Other Topics Related to Volumetric Modeling

In this section, we briefly mention other topics that are closely related to volumetric

modeling but with different goals and contexts.

3.4.1 Realistic Rendering of Translucent Materials

Most of the works mentioned above use simple methods for rendering (e.g., Lamber-

tian reflectance, volume ray casting, etc.) while focusing more on how to define the

volumetric color distributions. On the other hand, there have been numerous works

in the long history of computer graphics that focus on volumetric light interactions

within participating media to achieve photorealistic rendering of natural materials and

phenomena, such as cloud [50], fur [49, 80], stones [24], meso-structures [11, 104], het-

34

3.4. Other Topics Related to Volumetric Modeling

Figure 3.18: Some results of realistic rendering of translucent materials: (from top

left to bottom right) Kajiya’s early work on raytracing volume densities [50], fur ren-

dering by Kajiya and Kay [49], hypertexture [80], weathered stones [24], shell texture

functions [11], quasi-homogeneous materials [104], heterogeneous translucent materials

[109], skin [23], anisotropic materials [44], and cloths [121].

erogeneous translucent materials [109], skin [45, 22, 23], anisotropic materials [44], and

cloths [121], among many others (Figure 3.18).

Along with equations and algorithms to solve them, these works also develop meth-

ods for generating the actual volumetric dataset to render, including procedural def-

inition, use of fluid simulation, measurements using photographs or CT images, and

manual creation by artists. This part has a certain overlap with the field of volumetric

modeling we have discussed so far; those volumetric modeling methods can be useful

for the purpose of realistic rendering of participating media. Although these two fields

have been separate possibly because of the difference in their goals, we expect that

they will come close to each other in the near future.

3.4.2 Volume Visualization

There are numerous works that focus on visualizing CT or MRI volume data in the

context of scientific visualization in various fields such as medicine, biology, and ar-

chaeology. They mainly focus on the purposes of visual analysis, explanation, and

education, and typical approaches include illustrative rendering [8, 63] and interactive

browsing using deformation [65, 13], among many others (Figure 3.19).

The main difference from the volumetric modeling techniques we have discussed

in the previous sections is that they start with a given volume dataset. Also, they

35

Chapter 3. Related Work

Figure 3.19: Examples of typical volume visualization approaches: illustrative render-

ing [8] (left) and use of deformation [13] (right).

mostly aim at non-photorealistic, illustrative, and explanatory depictions rather than

realistic or plausible appearances.

Note that it would be useful to apply such visualization techniques to the results

of the volumetric modeling techniques for further enhancing the browsing experiences.

36

Chapter 4

User Interfaces for Modeling Volumetric

Orientation Fields

Manually creating a detailed volumetric color distribution from scratch is hard. In-

stead, we start the modeling process by first creating volumetric orientation fields that

describe overall distributions of orientation of anisotropic structures of objects. This

is because many natural objects, such as tree stumps, carrots, and kiwi fruits (Figure

4.1), have internal structures that can be seen as some common anisotropic structures

repeating over and over throughout the object interior while changing its orientation.

Definition of “3D orientation” can differ depending on the application needs; it can

either be a simple 3D vector, a frame (i.e., a set of three orthogonal 3D vectors), a

symmetric tensor (i.e., 3×3 matrix) whose eigenvectors represent three orthogonal non-

orientable directions, or a N-rotational symmetry (N-RoSy) which further generalizes

the tensor form to represent a set of non-orthogonal non-orientable directions. In this

chapter, we present two methods for modeling volumetric orientation fields, one for

Figure 4.1: Examples of natural volumetric objects whose internal structures can be

seen as the repetition of some common anisotropic patterns along an overall orientation

field.

37

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

Figure 4.2: Early works that demonstrated the importance of creating orientation

fields. (From left to right) Anisotropic texture synthesis on surfaces by Praun et al.

[85] and Turk [106], pen-and-ink illustration of 2D images by Salisbury et al. [92] and

of 3D smooth surfaces by Hertzmann and Zorin [38].

vector fields and the other for frame fields.

In general, specifying a 3D orientation in 3D space is perceptually much harder than

specifying a 2D orientation in 2D space, and therefore modeling volumetric orientation

fields is much more difficult than modeling orientation fields on a 2D plane or on

a 3D manifold surface. Designing an appropriate user interface is thus crucial for

enabling efficient modeling of volumetric orientation fields. In accordance with our

Principle I for volumetric modeling (i.e., “propagating user-specified information on

the surfaces through the volume”), we decompose the modeling process into simpler

steps by exploiting some domain knowledge which reduces the excessive freedom in

specifying 3D orientation.

Methods described in this chapter are used in the next chapter to create detailed

volumetric color distributions by synthesizing solid textures along the created vol-

umetric orientation fields. While our primary focus is on creating volumetric color

distribution of objects, volumetric orientation fields can also be used for variety of

other applications. Here we demonstrate two applications that utilize volumetric ori-

entation fields created using our methods: electrophysiological simulation of heart

ventricles and active deformation of unarticulated objects.

4.1 Related Work

The importance of creating orientation fields was first recognized by applications that

use such orientation fields, such as synthesis of anisotropic textures on surfaces [85, 106]

and pen-and-ink illustration of images [92] and smooth surfaces [38] (Figure 4.2).

In these early works, orientation fields were created using relatively naive ap-

proaches, such as simple Gaussian radial basis functions interpolation [85], low-pass

38

4.1. Related Work

Figure 4.3: New applications emerging from recent orientation field modeling methods:

(from left to right) mixed-integer quadrangulation [6], procedural city design [10], and

planar quad mesh design useful for architectural glass structures [61].

filtering [106], manual painting of orientations [92], and smoothing of surface principal

curvature tensors [38]. Since then, many methods for modeling orientation field have

been proposed to improve these early methods. New representations more general

than simple vector field [118, 31] have been proposed, such as symmetric tensor field

[118], N-RoSy field [77, 89, 88, 14], and conjugate direction field [61]. Typical advan-

tages of these new methods include more control on the field topology [118, 89, 88], the

intrinsic rotation-invariant property [31], and a simpler formulation for interpolation

[14]. Several new applications emerge from these new methods for modeling orienta-

tion fields, such as quadrangulation [6], procedural city design [10], and planar quad

mesh design [61] (Figure 4.3). Note, however, that the above techniques all deal with

orientation fields on a 2D plane or on a 3D manifold surfaces, instead of volumetric

orientation fields.

Modeling of volumetric orientation field is a much less explored topic. The need for

modeling volumetric orientation field was recognized for the first time when Owada et

al. proposed the volumetric illustration system [76]. In their system, the user creates

a volumetric vector field by placing several arrows on a cross-section of the 3D model,

which are interpolated in 3D space using radial basis functions. The created volumetric

vector field is then used to synthesize oriented 2D textures on cross-sections of the 3D

model (Figure 4.4).

Concurrent to our work, Fu et al. [33] proposed a sketch-based hairstyle design

system that uses a volumetric vector field to guide the growth of hair strands from the

scalp. They propose a method for modeling volumetric vector fields that is specialized

for hairstyle design. Specifically, their interface consists of three different modes of

sketching curves: stream curve mode, dividing curve mode, and ponytail mode, each of

which defines a certain set of constraints on the volumetric vector field (Figure 4.5 a and

b). The system interpolates such constraints using Laplacian smoothing over a voxel

grid to obtain a smooth volumetric vector field. They also propose simple schemes

39

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

Figure 4.4: The volumetric illustration system by Owada et al. [76], in which a

volumetric vector field is constructed from several user-specified 3D arrows (left) and

2D oriented textures are synthesized accordingly (right).

(c) (d)(a) (b)

Figure 4.5: Sketch-based hairstyle design system by Fu et al. [33]. Constraints on the

volumetric vector field defined by a stream curve (a) and a ponytail curve (b). 3D

curves sketched by an artist (c) and the resulting hairstyle (d).

to circumvent the difficulty of making 3D curves by 2D sketching. For example, a

curve point sketched on the scalp sticks to the scalp, a curve point crossing the scalp

silhouette is assigned the same screen-space depth as the previous curve point, and

the curve geometry can be modified by over-sketching on a supporting surface defined

by sweeping the curve in a certain direction. One of their hairstyle design results is

shown in Figure 4.5 d.

Later than our work, Zhang et al. [119] proposed a method for synthesizing

anisotropic solid textures that follow user-defined volumetric frame fields. They de-

velop a straightforward interface for modeling volumetric frame field; the user draws

curves on a given 3D surface or on an arbitrary 3D plane, and each curve point defines

a constraint frame formed by the curve tangent, the surface (or the plane) normal, and

their cross-product (Figure 4.6 left). Internally, a frame is represented as a quaternion,

and smooth volumetric frame fields are obtained by performing Laplacian smoothing

40

4.1. Related Work

Figure 4.6: Sketch-guided solid texturing developed by Zhang et al. [119]: user-input

3D curves and an interpolated volumetric frame field (left), and the synthesis result

(middle and right).

for the constrained quaternions. For the synthesis of solid textures, they use a modi-

fied version of Dong et al.’s algorithm [21]. Figure 4.6 middle and right show one of

their results.

Recently, Huang et al. [39] propose a unique method for modeling volumetric orien-

tation field. The primal application of their method is the generation of a hexahedral

mesh that fills the interior volume of a given 3D surface while aligning as much as

possible to the surface normals at its exterior boundaries. For such an application, a

smooth 3D cross-frame field defined over a volume is useful for guiding the hexahedral

meshing, much like a smooth 2D cross-frame field defined over a surface is useful for

guiding the surface quadrangulation. A 3D cross-frame is different from a 3D frame

(i.e., a set of three orthogonal vectors) in that it is non-orientable and the ordering

of the three axes does not matter; i.e., if a 3D cross-frame is rotated about one of

its axes by the multiple of π
2 , it is considered equivalent to the original. Huang et

al. propose a convenient way of representing such a 3D cross-frame using spherical

harmonics, and successfully generate smooth 3D cross-frame fields that align well with

the input boundary surface, subsequently generating well-shaped hexahedral meshes

that fill the interior volumes (Figure 4.7). Note, however, that their main focus is on

how to represent and interpolate 3D cross-frames, instead of intuitive user interfaces

for manual control of orientations.

41

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

Figure 4.7: A streamline-based visualization of a volumetric 3D cross-frame field gen-

erated by Huang et al.’s algorithm [39] (left), and a volumetric hexahedral mesh seb-

sequently generated from the field (right).

4.2 Common Machinery: Laplacian Smoothing

Before describing our methods in detail, in this section we briefly review the basics of

Laplacian smoothing, a common interpolation technique used for both of our methods

for modeling volumetric orientation field described later. Laplacian smoothing and

relevant gradient-domain processing techniques became popular after Yu et al. [117]

and Sorkine et al. [96] proposed mesh deformation techniques based on Laplacian

operator. A thesis by Nealen [68] gives a good introduction and overview of the field.

The fundamental advantage of Laplacian smoothing over other spatial interpolation

techniques such as radial basis functions (RBF) [107] is that it can take the domain

topology into account for interpolation. For example, given two points residing on a

very concave surface that are nearby in Euclidean distance but actually far away in

geodesic distance, simple spatial interpolation techniques such as RBF treat them as

being close to each other, while Laplacian smoothing treats them as being distant.

Laplacian smoothing is an operation which can be defined on any kind of graph

structure that has a set of vertices and connectivity information, such as triangular

meshes, tetrahedral meshes, pixel grids, and voxel grids. Given the graph consisting

of n vertices, the goal is to find a smoothly varying scalar field x = (x1, . . . , xn)
T

over the graph that satisfies additionally specified linear constraints on x as much as

possible.

To measure the smoothness, the Laplacian δi for each vertex i is defined as

δi = xi −
∑
j∈Ni

wi,jxj ,

42

4.2. Common Machinery: Laplacian Smoothing

where Ni is a set of vertices adjacent to the vertex i, and wi,j are weights that satisfy

the partition of unity property (i.e.,
∑

j∈Ni
wi,j = 1). The weights can be defined

differently depending on the application requirements. In the simplest case, wi,j is

set as 1
|Ni| which is often called the uniform Laplacian. For an irregularly sampled

triangular mesh, the cotangent Laplacian [18] which accounts for the angles of the mesh

triangles is a popular choice for achieving good approximations. In our method for

modeling frame fields described later, we use a our specific definition for these weights.

The entire smoothness energy over the graph can be expressed as the magnitude of the

Laplacian vector δ = (δ1, . . . , δn)
T , which can be written using the matrix notation as

Es(x) = ∥δ∥2 = ∥Lx∥2

where L = (li,j) is an n× n matrix (called Laplacian matrix) with

li,j =

1 (i = j)

−wi,j (j ∈ Ni)

0 (otherwise)

.

Given m linear constraints whose k-th constraint is expressed as

n∑
j=1

ck,jxj = bk (k = 1, . . . ,m),

the residual can be expressed as Cx− b where C = (ck,j) and b = (b1, . . . , bm)T . The

quadratic energy for the linear constraints is thus given as

Ec(x) = ∥Λ(Cx− b)∥2

where a diagonal matrix Λ = diag(λ1, . . . , λm) adjusts weights for individual con-

straints.

Our goal is to find

arg min
x

Es(x) + Ec(x)

which is a least squares problem whose solution has the following closed form:

x = (LTL+ CTΛ2C)−1CTΛ2b.

Most of the time, the matrices L and C are both sparse, allowing us to use any existing

sparse matrix solvers such as UMFPACK [16] which we always use. Note that it is

often the case that the Laplacian matrix, once constructed from the original graph,

remains the same regardless of the user interaction, thus it can be reused conveniently.

43

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

4.3 Modeling of Volumetric Vector Field

In this section, we present a method for modeling a volumetric vector field that fills

the interior of a given boundary surface. In accordance with our Principle I, we make

the modeling process simple and efficient by assuming that the volumetric vector field

at the boundary surface is always parallel to the surface tangent. This assumption

holds true for various examples such as a bunch of muscle fibers and a fluid flow

contained within a bounded region. This assumption makes it possible to decompose

the modeling process into two simpler steps: first sketching on the boundary surface to

create a smooth tangent vector field which determines the overall flow of the volumetric

vector field, and then sketching on arbitrary cross-sections of the volume to make

detailed adjustments to the current volumetric vector field.

4.3.1 User Interface

The user first loads a closed manifold triangular mesh as a boundary surface. After

the system completes some preprocessing which takes a few seconds, the user can

start sketching on the surface to create a smooth tangent vector field. As the user

draws a new stroke on the surface, the surface tangent vector field is updated instantly

such that it locally aligns with the user-drawn strokes (Figure 4.8 left). The user can

draw arbitrary number of strokes on the surface. After creating a satisfactory tangent

vector field, the user presses a button to let the system compute the volumetric vector

field based on the tangent vector field, which takes a few seconds. The user can cut

the model at an arbitrary position by drawing a crossing stroke (Figure 4.8 middle)

and browse the volumetric vector field sampled on the cross-section. To make further

detailed adjustments, the user can draw arbitrary number of strokes on cross-sections.

The user presses a button to let the system update the volumetric vector field according

to the user-drawn strokes, which takes a few seconds (Figure 4.8 right). Note that the

user can modify the tangent vector field at any time.

4.3.2 Algorithm

Figure 4.9 shows an overview of our algorithm for computing a volumetric vector field.

A surface vector field is first constructed based on the user-drawn strokes on the surface

(Figure 4.9a). Then, the surface vector field is transformed into a set of constraints on

the boundary voxels (Figure 4.9b). Finally, the volumetric vector field is constructed

based on these constraints and additional internal strokes drawn by the user (Figure

4.9c).

44

4.3. Modeling of Volumetric Vector Field

Figure 4.8: User interface for modeling volumetric vector fields. The user draws

strokes on the surface to create the surface vector field (left), then cuts the model

to see the volumetric vector field sampled on the cross-section (middle), and further

draws strokes on the cross-section to modify the volumetric vector field at the interior

(right).

(a) (b) (c)

Figure 4.9: An overview of our two-step algorithm for computing a volumetric vector

field. (a) The surface vector field is first constructed. (b) The surface vector field

is transformed into a set of constraints for the boundary voxels. (c) The volumetric

vector field is finally constructed based on these constraints.

45

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

The user first loads a triangular mesh as a boundary surface. The system then

extracts a set of voxels inside the surface using a standard scanline-based voxelization

technique. The surface vector field and the volumetric vector field are defined for

the surface mesh and the voxel grid, respectively. The system next constructs two

Laplacian matrices, one for the surface mesh and the other for the voxel grid, as a

preprocessing. We use cotangent weights for the Laplacian matrix of the surface mesh,

while we use uniform weights for the Laplacian matrix of the voxel grid.

The surface vector field is computed based on the user-drawn strokes on the surface.

Every small segment of each stroke assigns the unit vector of its direction to its closest

mesh vertex as a constraint (Figure 4.10 left). From these constraints, the smooth

surface vector field is obtained by performing Laplacian smoothing on the surface

mesh.

The volumetric vector field is computed based on the surface vector field and the

additional strokes drawn on cross-sections. The surface vector field is transformed

into constraints for the volumetric vector field as follows. For each boundary voxel

(i.e., the most exterior voxel), the system knows information about the relationship

between the voxel and the surface mesh (i.e., the closest triangle and corresponding

barycentric coordinates), which is determined when voxelizing the surface mesh. Thus

a linear interpolation of the surface vector field using that information is assigned to

the boundary voxel as a constraint (Figure 4.10 middle). Strokes on cross-sections are

transformed into constraints much like in the case of surface vector field; every small

segment of each stroke assigns the unit vector of its direction to its closest voxel as a

constraint (Figure 4.10 right). From these constraints, the smooth volumetric vector

field is obtained by performing Laplacian smoothing on the voxel grid.

Note that each of the x, y, and z components of 3D vector is processed separately,

and later combined. When computing the smooth surface vector field using Laplacian

smoothing, it is not guaranteed that the resulting vector field is always tangent to

the surface. Thus, the system projects each of the resulting vectors along its surface

normal direction. Also, since we aim at modeling orientation fields, we chose not

to care about the magnitude (or norm) of vectors. Therefore, we always perform

normalization of vectors after each calculation as a post-process. Normalization of a

vector is undefined if it is exactly a zero vector; we simply assign a random value when

this rare case happens.

46

4.4. Modeling of Volumetric Frame Field

Figure 4.10: Constraints for the Laplacian smoothing. (Left) A stroke segment on

the surface assigns a unit vector parallel to its direction to its closest surface mesh

vertex. (Middle) A boundary voxel is assigned a linearly interpolated vector from its

nearest surface mesh triangle. (Right) A stroke segment inside the volume assigns a

unit vector parallel to its direction to its closest voxel.

4.4 Modeling of Volumetric Frame Field

In this section, we describe a method for modeling volumetric frame fields inside an

object. In accordance with our Principle I, we make the modeling process efficient

by assuming that one of the frame direction (which we call “primary direction”) corre-

spond to the gradient direction of a scalar “depth” field over the volume, and the other

two directions of the frame (which we call secondary and tertiary directions) form a

smooth 2D tangent frame field for each “depth layer” surface (i.e., iso-surface of the

depth field). This assumption holds true particularly for myocardial fiber orientation

of heart ventricles as reported by Nielsen [70], but also for other natural objects such as

kiwi fruits, carrots, and tree stumps which have some notion of depths (i.e., innermost

and outermost parts) and an additional “up” direction perpendicular to the depth

direction (Figure 4.11). This assumption allows us to decompose the entire process of

modeling volumetric frame field into two simpler steps: creating a scalar depth field

over the volume, and specifying the secondary direction on each depth layer. This

decomposition ensures that the secondary direction is always perpendicular to the

primary (i.e., depth) direction, forming a valid frame.

4.4.1 User Interface

The user first loads a tetrahedral mesh in which the volumetric frame field is going

to be modeled. Such a tetrahedral mesh can be constructed from a closed triangular

mesh using common tools such as TetGen [94].

The user then starts the first step of creating a scalar depth field inside the model.

47

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

depth direction “up” direction

Figure 4.11: Examples of real-world objects which have the notion of depth and “up”

directions.

Figure 4.12: Points with constraint depth values placed by the user for a heart ventricle

model.

The system provides a palette of predefined depth values (which are 0, 0.25, 0.5, 0.75,

and 1 in our current implementation) from which the user chooses as a constraint

depth value. The user places points with constraint depth values at several locations

(Figure 4.12), and presses an “update” button. Then the system computes a smooth

depth field interpolating those user constraints (Figure 4.13). Here the depth values

are visualized using colors (i.e., the color becomes red, yellow, green, cyan, and blue

as the depth changes from 0 to 1). The depth layers are constructed at the same

time, and the user can browse different layers by rolling the mouse wheel. The user

continues adding or removing colored points until obtaining satisfactory layer shapes.

After the depth field is created, the user moves on to the next step of specifying the

secondary directions on the depth layers by sketching strokes (Figure 4.14a). When

the user presses an “update” button, the system computes a smooth volumetric frame

field. The secondary directions can be visualized using streamlines (Figure 4.14b).

48

4.4. Modeling of Volumetric Frame Field

(a) (b)

Figure 4.13: A smooth depth field interpolating the user constraints, visualized on a

cross-section (a) or on layers (b).

(a)

(b)

Figure 4.14: Secondary directions of the frame field. The user draws strokes on each

depth layer (a), and the interpolated frame field is visualized using streamlines (b).

49

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

4.4.2 Algorithm

For computing smooth depth fields, we use RBF interpolation [107] instead of Lapla-

cian smoothing, since we want to compute a smooth scalar field and its gradient. The

depth layers are trivially extracted using the marching tetrahedra algorithm [105].

For computing the secondary directions, we use Laplacian smoothing on the tetra-

hedral mesh. In order to enforce more smoothness among vertices with similar depths,

we alter the definition for the weights in the Laplacian operator as follows. For two

adjacent vertices i and j, the weight for the Laplacian operator is defined as

wi,j = exp(−λRr
2
i,j − λDd2i,j)

where ri,j and di,j are the Euclidean distance and the depth difference between the

two vertices, respectively, with λR and λD weighting the corresponding factors. We

set λD relatively higher with respect to λR such that the continuity of the field on the

same depth layer is enforced appropriately. (Note that wi,j is further normalized to

satisfy the partition of unity property.) Similarly, a constraint value c specified at a

3D position p is incorporated into the linear constraint form as follows. Assuming p is

within a tetrahedron T whose four vertices are denoted as i1, i2, i3, and i4, the linear

constraint is expressed as

w1xi1 + w2xi2 + w3xi3 + w4xi4 = c

with wk = exp(−λRr
2
k − λDd2k) and rk and dk being the Euclidean distance and the

depth difference between p and the vertex ik, respectively. (Note that wk is further

normalized such that
∑4

k=1 wk = 1.) Similar to the modeling of surface vector field

described in the previous section, we process each of the x, y, and z components of 3D

vector (i.e., secondary direction) separately. The Laplacian smoothing operation does

not guarantee that the resulting secondary direction is always perpendicular to the

primary direction. Therefore, the system removes components parallel to the primary

direction from the secondary direction as a post-process. This way, we ensure that

the secondary direction is always perpendicular to the primary direction. The tertiary

direction is simply obtained as a cross-product of the primary and the secondary

directions.

50

4.5. Application 1: Electrophysiological Simulation of Heart Ventricles

Figure 4.15: Electrophysiological simulation with a virtual heart model (left), and an

illustration of myocardium of heart ventricles (right).

4.5 Application 1: Electrophysiological Simulation of Heart

Ventricles

4.5.1 Background and Motivation

Many people suffer from abnormal heart rhythm, and effective treatment is much

desired. One approach to understanding the mechanism of this disease is electrophysi-

ological simulation of the heart [67] (Figure 4.15 left). Various parameters are required

for this simulation, and orientation of myocardial fiber (i.e., muscle fiber of heart as

shown in Figure 4.15 right) is one of the key elements that determines the behavior of

signal propagation [1, 2], because the speed of excitation propagation is about three

times faster in the longitudinal direction of myofibers than in the transverse direction.

In order to study the direct influence of the myocardial fiber orientation on the sim-

ulation result, it is necessary for physicians to manually create various models of fiber

orientation based on their expert knowledge. Approaches employed previously include

specifying 3D vectors on discrete 2D slices manually, or generating the volumetric

vector field by hard cording, both of which are difficult and time-consuming.

In this section, we utilize our interfaces for modeling volumetric orientation fields

to help this process. We asked Dr. Takashi Ashihara, a cardiologist at Shiga Uni-

versity of Medical Science, to create myocardial fiber orientations using both of our

interfaces for modeling vector fields and frame fields described in Sections 4.3 and

4.4, respectively. We applied the resulting myocardial orientation fields to a simplified

electrophysiological simulator [36]. Since the simulator takes as input a volumetric

vector field representing the myocardial fiber orientations, for the case of using our

interface for modeling frame fields, we treat the field of the secondary direction as the

51

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

Figure 4.16: Myocardial fiber orientations created using our interface for modeling

vector fields (left) and its corresponding electrophysiological simulation (right).

Figure 4.17: Myocardial fiber orientations created using our interface for modeling

frame fields: (from left to right) user-drawn strokes, streamline-based visualization,

and corresponding electrophysiological simulation.

vector field.

4.5.2 Results

Figures 4.16 and 4.17 show myocardial fiber orientations created by the cardiologist

and corresponding simulation results. We can observe the influence of the difference of

myocardial fiber orientations on the excitation propagation in the simulation results.

We then interviewed the cardiologist and obtained the following feedback. He

evaluated our interfaces as important contributions to his area of research, because they

52

4.6. Application 2: Active Deformation of Unarticulated Objects

are the first ones that allow the user to directly create 3D fiber structures. Existing

methods force the user to work on 2D slices or to rely on hard coding, which are both

difficult and tedious. He was pleased with the myocardial fiber orientations he created

using our interfaces, as they successfully represented the typical twisted structure of

myocardial fibers. He preferred our interface for modeling frame fields to our interface

for modeling vector fields, because an actual myocardial fiber consists of several layers

parallel to the surface, and researchers usually associate myocardial fiber orientations

with such layers and not with cross sections.

4.6 Application 2: Active Deformation of Unarticulated Ob-

jects

In this section, we present ProcDef, a procedural deformation framework for designing

animations of unarticulated objects that are difficult to handle using existing skeleton-

or keyframing-based methods. Since completely explaining all the technical details of

the framework is beyond the scope of this thesis, we briefly explain the overview and

how our interface for modeling volumetric orientation fields is useful for the framework.

We refer the reader to the original article [42] for more details.

4.6.1 Background and Motivation

Most animation authoring methods are designed for rigged characters whereby the

character body is divided into near-rigid parts such as arms and legs, and the user

controls the joint angles between them. However, little work has dealt with the ani-

mation of flexible objects without specific skeletal structures such as jellyfish, snails,

slugs, hearts, and stomachs. A typical approach to animating this type of object is

to set a sequence of discrete key poses and interpolate them in time, but specifying

individual key poses by manipulating many control points is a tedious work. Further-

more, making these objects respond to external forces such as contacts and collisions

after all key poses are complete is very difficult.

We propose ProcDef to solve this problem. Our key observation is that the de-

formations of such flexible objects are driven by expansion and contraction of the

local tissues. Local tissues receive some excitation signals and transform their shapes

individually, and then the accumulation of the local deformations induces the global

motion. For example, a heart is a muscular organ in which muscle fibers are aligned

in a spiral direction. When beating, the heart muscles receive an electric signal arising

53

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

(d)

(a) (c)

(b)
(f)

(e)

Figure 4.18: Overview of our ProcDef framework. Given an input 3D model (a),

the user specifies parameters for local deformations, such as local orientation (b),

phase-shift field (c), and deformation chart (d). The system computes global motion

by accumulating local deformations (e). The propagation of deformation signals is

visualized by highlighting the excited vertices in red (f).

in the sinoatrial node and locally contract along their fiber orientations, inducing a

global twisting motion.

Based on this observation, we propose to create the global motion of a flexible

object by controlling its local deformations (Figure 4.18). The user specifies local de-

formations such as contraction and expansion, and the system synthesizes the global

motion by assembling the local deformations and taking the external forces into ac-

count. Stimuli-response deformations can be naturally handled within this framework.

An important parameter for controlling local deformations is a volumetric frame

field that specifies the orientation of contraction and expansion for each local tissue,

which is efficiently created using our interface for modeling frame fields described

in Section 4.4. Other than the local orientation, there are several parameters for

controlling deformations, such as one called “deformation charts” which define cyclic

time-varying stretching and contraction of a local element in three directions (Figure

4.19).

4.6.2 Algorithm

Our algorithm for computing global motions induced by the accumulations of local

deformations is based on shape matching dynamics [66, 91] which is unconditionally

robust and computationally inexpensive, making ProcDef well suited for real-time

interactive applications.

Figure 4.20 shows an overview of our deformation algorithm. Before the animation,

54

4.6. Application 2: Active Deformation of Unarticulated Objects

×1/A

×A

×1

contract

expand

0 T

For primary direction

Time line Control points

0 T

For secondary direction

0 T

For tertiary direction

Tensor field

Figure 4.19: Deformation charts defining expansion and contraction rates. Top row

shows an orientation field and a local region (cube). The three charts define the

deformation rate in the primary, secondary, and tertiary directions of the orientation

field.

we prepare a volumetric tetrahedral mesh and define a local region Ni around each

mesh vertex i by connecting immediate (1-ring) neighborhood vertices. Neighboring

local regions overlap each other (Figure 4.20a). In each animation step, we first deform

each region Ni of the original mesh based on the user-specified deformation function

Ti(t), and then synthesize a new global shape that satisfies the deformed local regions

as much as possible. For example, if we horizontally expand the upper regions and

contract the lower regions (Figure 4.20b), the global shape bends downward (Figure

4.20c). If we contract the upper regions and expand the lower regions (Figure 4.20d),

the global shape bends in the opposite direction (Figure 4.20e).

The local deformation function Ti(t) varies depending on vertex i and time t.

We define Ti(t) as a linear transformation to simplify the problem. Note that even lo-

cally linear transformations can generate globally complicated nonlinear deformations.

Since manually defining the individual Ti(t) to design expressive motions is extremely

difficult and time-consuming, our system provides an efficient scheme for defining Ti(t)

with a few global controls. We refer the reader to the original article [42] for more

details.

55

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

(c) (e)

T(t0) T(t1))d()b(

(a)

Ni

Figure 4.20: Overview of our deformation algorithm. We first deform individual local

regions Ni (b)(d) of the original mesh (a) by the user-specified linear transformation

T (t) and synthesize the global shape that satisfies the deformed local shapes (c)(e).

4.6.3 Results

ProcDef supports general deformations that are induced by muscular tissues and it

covers a large variety of possible motions. Figures 4.18e and 4.21 (left) show swimming

jellyfish and crawling worms designed with ProcDef, respectively. The user can easily

design these animations by setting the orientation field and other parameters using our

interface. ProcDef can also easily handle stimuli response phenomena. In Figure 4.21

(right), a snail deforms its body when the user adds an external simulus to it. The

deformation starts at the contact point and propagates through the entire volume.

Figure 4.22 shows scenes containing many moving objects. In these examples, the

system computes both the deformations and collision avoidances between objects in

real time. Note that these characters have not been frequently used in video games so

far, because it was difficult and costly to design and compute their motions. We hope

our method can make such currently unpopular characters to be heavily used in the

future.

56

4.6. Application 2: Active Deformation of Unarticulated Objects

(c)

(d)

Figure 4.21: (Left) A crawling motion of a worm. (Right) A snail responding to a

stimulus given by the user.

Figure 4.22: Many moving objects: 31 swimming jellyfishes (left) and 101 short worms

(right).

Our system is also useful for animating organs (Figure 4.23). We use the same

heart ventricle model and its volumetric frame field created in the previous section

and set other parameters appropriately to generate highly realistic twisting motions

of the heart. We also designed animations of a bowel. We defined a ring-shaped

orientation field to generate peristaltic motions. Since these organ animations are

computed in real time on a standard PC and the user can interact with the model, we

believe ProcDef would be useful for medical applications such as surgery simulations

or electronic charts.

57

Chapter 4. User Interfaces for Modeling Volumetric Orientation Fields

(a) (b)

LV RV

LV RV

(c)

(d) (g)(e) (f)

Figure 4.23: Animations of a heart and an S-shaped bowel. LV and RV indicate the

left and right ventricles of the heart. We show the representative poses of the heart

motion in the top row of (c). The bottom row of (c) is an overhead view of the sliced

heart model. When beating, the left ventricle (LV) wall strongly thickens to reduce

the size of the left ventricle (c).

58

Chapter 5

Raster-Based Method for Representing

Detailed Internal Structures using

Anisotropic Solid Textures

In this chapter, we present our raster-based method to create a detailed volumetric

color distribution inside a 3D model by synthesizing anisotropic solid textures along

a volumetric orientation field created using our interfaces for modeling volumetric

orientation fields described in the previous chapter.

5.1 Overview

Our basic idea is to fill the model with overlapping patches of solid textures. This is

inspired by the Lapped Textures approach proposed by Praun et al. [85], in which

they synthesize anisotropic 2D textures on a 3D surface by covering the surface with

overlapping patches of an exemplar 2D texture that align with a user-specified tan-

gent orientation field (Figure 5.1 top). Our approach extends their approach from

2D surface textures to 3D solid textures, thus called Lapped Solid Textures, where

we synthesize anisotropic solid textures inside a 3D model by filling the volume with

overlapping patches of an exemplar solid texture that align with a user-specified vol-

umetric orientation field (Figure 5.1 bottom). Seams among patches are made less

noticeable by using alpha blending.

This approach is in accordance with our Principle II for volumetric modeling

(i.e., “exploiting structural regularities to achieve compact representations and fast

algorithms”) in that the repetition of detailed structures is considered as the structural

regularity. This regularity allows us to achieve a compact representation by reusing the

59

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

tangent
orientation field

volumetric
orientation field

Figure 5.1: Conceptual similarities between Lapped Textures by Praun et al. [85] (top)

and our Lapped Solid Textures (bottom).

same texture data many times to fill the model, as well as a fast patch-based texture

synthesis algorithm as opposed to previous voxel-based texture synthesis algorithms.

Our approach inherits the same advantages with Praun et al.’s approach as follows.

Our representation is very compact because we can reuse the input bitmap texture

data many times and only need to store the texture mapping information (i.e., 3D

texture coordinates), instead of the synthesized color at every 3D point. Our approach

is computationally inexpensive; the precomputation of patch placement takes only

tens of seconds, and the resulting model displays in real time using only standard

features of the GPU. Other general color channels in the texture such as displacements

can be trivially incorporated. Finally, efficient implementation of our approach is

straightforward.

60

5.2. User Interface

A unique difference of our method from Praun et al.’s is that our method takes

advantage of our classification of solid textures presented in Chapter 2. Depending on

the texture type, texture patches are placed along different kinds of volumetric fields,

such as vector field, frame field, and depth field. Our system provides an intuitive mod-

eling user interface and an efficient synthesis algorithm tailored for each texture type.

Another notable difference is that we are able to handle layered textures (i.e., textures

with variation level 1) by considering the layer depth during the patch-pasting process,

while the original Praun et al.’s technique was limited to homogeneous textures (i.e.,

textures with variation level 0). Thanks to this extension, we can create volumetric

models of objects with layered internal structures such as kiwi fruits, carrots, and

trees, whose appearance changes gradually in the depth direction.

Note that our method assumes the availability of the input solid texture exemplar;

various ways for creating different types of solid texture exemplars are detailed in

Appendix A.

5.2 User Interface

The user first loads a tetrahedral mesh representing the 3D model’s geometry and an

exemplar solid texture. The system then shows a dialog box to allow the selection of a

texture type. We explain the modeling process for each texture type in the following.

5.2.1 Texture Type 0-A

This type corresponds to isotropic textures, such as sponge and concrete. In this

case, the user only needs to specify a volumetric scalar field representing the spatially-

varying texture scaling. The user first puts a solid texture onto the model by clicking,

and moves it interactively by dragging with the mouse (Figure 5.2a). The user can

change the texture scale interactively using the mouse wheel (Figure 5.2b). When

satisfied, the user can set the local texture scale by double-clicking on the desired

position of the model. After the texture scaling is set appropriately (Figure 5.2c), the

system fills the model with the texture taking into account such user-specified texture

scaling (Figure 5.2d).

5.2.2 Texture Type 0-B

This type represents textures with flow or fiber orientation, such as bamboo and

muscle. The user first specifies a volumetric vector field over the model using one of

our interfaces presented in Chapter 4. After the volumetric vector field is created, the

61

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

(a) (b) (d)(c)

Figure 5.2: Modeling process for texture type 0-A. (a) Moving the texture patch by

dragging with the mouse. (b) Changing the texture scale with the mouse wheel. (c)

User-specified texture scaling. (d) Result of automatic filling (rendered with displace-

ment mapping).

(a) (b) (c)

Figure 5.3: Modeling process for texture type 0-B. (a) Drawing strokes to specify local

vector fields. (b) Setting the texture scaling. (c) Result of automatic filling.

user then sets the texture scaling (Figure 5.3b) as in the previous section. Finally, the

system fills the model with the texture (Figure 5.3c).

5.2.3 Texture Type 0-C

This type represents homogeneous textures whose cross-sections have three different

appearances depending on their relative orientations with respect to the local frame

field. Such textures can be seen in materials such as flattened fibers. In this case, the

user creates a frame field over the model using our interface for modeling volumetric

frame fields presented in Section 4.4 (Figure 5.4 a, b). After the frame field is set

appropriately, the user moves on to the process of setting the texture scaling (Figure

5.4c), followed by automatic filling (Figure 5.4d).

5.2.4 Texture Type 1-A

This type represents layered textures, such as cakes and watermelons. The user speci-

fies a depth field over the model using our interface for modeling depth fields presented

in Section 4.4 (Figure 5.5 a, b). After the depth field is set appropriately, the system

then fills the model with the texture while considering the layer depth (Figure 5.5c).

62

5.2. User Interface

(a) (b)

(c) (d)

Figure 5.4: Modeling process for texture type 0-C. (a) Specifying the depth field.

(b) Specifying the secondary directions by drawing strokes on layers. (c) Setting the

texture scaling. (d) Result of automatic filling.

(a) (b) (c) (d) (e)

Figure 5.5: Modeling process for texture type 1-A. (a) Painting interface for modeling

a depth field. (b) Computed depth field. (c) Result of automatic filling.

Texture scaling and orientation are derived automatically from the gradient of the

depth field.

5.2.5 Texture Type 1-B

This type also represents layered textures, as in type 1-A, but the two perpendicular

cross-sections parallel to the layer depth direction appear different. Such textures

can be seen in objects such as kiwi fruit, carrots, and trees. The modeling process

is identical to that for texture type 0-C, except that the texture scaling is derived

automatically from the gradient of the depth field (Figure 5.6).

63

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

(a) (b) (c)

Figure 5.6: Modeling process for texture type 1-B. (a) Specifying the depth field. (b)

Specifying the secondary directions by drawing strokes on depth layers. (c) Result of

automatic filling.

(a) (b) (c)

Figure 5.7: Manual pasting of additional textures. (a) Solid texture exemplar to be

pasted. (b) Moving and rotating the texture patch by dragging with the mouse. (c)

Changing the texture scale with the mouse wheel.

5.2.6 Manual Pasting of Textures

After the system generates a solid textured model, the user can also manually paste

additional solid textures onto the model. The user first loads an additional solid

texture (Figure 5.7a), which can then be moved and rotated on the model by dragging

the mouse (Figure 5.7b). The user can also change the texture scale interactively with

the mouse wheel (Figure 5.7c). Finally, the texture can be pasted onto the model by

double-clicking.

5.3 Algorithm

The input to our system consists of a tetrahedral mesh representing the 3D model’s

geometry and a solid texture exemplar. The output is a lapped solid textured (LST)

model; many overlapping patches of solid texture are pasted inside the mesh.

We used a tetrahedral mesh to represent solid models because this representation

64

5.3. Algorithm

has certain advantages over voxel representation for our purposes. First, it can ap-

proximate 3D shapes well with a smaller number of elements. Second, the tetrahedral

mesh naturally corresponds to a triangular surface mesh when we extend the original

2D technique [85] to 3D. Finally, cross-sectioning and iso-surface extraction can be

performed easily using marching tetrahedra [105], which is similar to marching cubes

[62] except that it is faster and easier to implement.

We first describe how to render an LST model created in our system and then

describe the process of constructing an LST model in detail.

5.3.1 Rendering an LST Model

Each tetrahedron in an LST model has a list of 3D texture coordinates assigned to

each of its four vertices. To render such a model, we first convert it into a polygonal

model that consists of surface triangles with a list of 3D texture coordinates assigned

to each of its three vertices. We can then render this polygonal model using the same

run-time compositing algorithm as Praun et al.’s method [85]. Each surface triangle

is rendered multiple times (approximately 10 to 20 times in most of our results) using

the texture coordinates in its assigned list, with alpha blending enabled.

Cutting

When the user cuts the model by drawing a freeform stroke (Figure 5.8a), the system

constructs a scalar field over the tetrahedral mesh vertices, which takes negative and

positive values on the left- and right-hand sides of the stroke, respectively (Figure

5.8b). We used RBF interpolation [107] to construct such a scalar field. The cross-

sectional surface is then obtained by extracting the iso-surface of value 0 from the

mesh (Figure 5.8c). The texture coordinates for each triangle on the cross-section are

obtained by linearly interpolating the texture coordinates of the original tetrahedron.

The tetrahedral mesh is subdivided near the cross-section to allow subsequent cutting

operations.

Volume Rendering

We can also perform volume rendering on an LST model using the same approach as

described above. We first construct a scalar field over the mesh vertices to give the

distance between the camera and each vertex. We then calculate a large number of

slices of the model perpendicular to the camera direction by iso-surface extraction.

65

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

+

– – –
00

– –

+ + + +

(a) (b) (c)

Figure 5.8: Cutting operation. (a) User-drawn stroke across the 3D model. (b) Scalar

field computed from the stroke. (c) Resulting cross-sectional surface mesh.

5.3.2 Construction of an LST Model

The overall procedure closely follows the original [85], but each process contains non-

trivial extensions, which we describe in detail in the following subsections. We first

create a 3D alpha mask for solid textures to make the resulting seams between pasted

texture patches less noticeable. We then construct a frame field over the mesh based

on user input. The direction and magnitude of the frame field specify the orientation

and scaling of the texture, respectively. Finally, textures are pasted repeatedly onto

the model while aligning with the frame field.

The texture pasting process is as follows. First, a seed tetrahedron is selected.

Then, we grow a clump of tetrahedra around the seed until it is large enough to cover

the texture patch being pasted. Next, we perform texture optimization which warps

the pasted texture so that it aligns locally with the frame field. Finally, we update

the coverage of textures for each tetrahedron.

We also propose a method to create depth-varying solid models which was not

addressed by Praun et al.’s original work [85]. We prepared several exemplar textures

with different alpha masks and pasted them according to the depth.

Creating a 3D Alpha Mask

In the original 2D case, Praun et al. [85] created alpha masks for 2D texture patches

using standard image editing tools. For a less-structured texture, they used a “splotch”

mask independent of the content of the texture. For a highly structured texture, they

created an appropriate alpha mask that preserved the important features of the texture

as much as possible.

In our 3D case, we manually created a 3D alpha mask for solid textures by modeling

a 3D shape of the mask using existing 3D modeling techniques, such as that reported

by Nealen et al. [69] (Figure 5.9a). This mask is the 3D version of the “splotch” mask

66

5.3. Algorithm

(a) (b)

Figure 5.9: Manual creation of a 3D alpha mask. (a) 3D shape of the mask. (b)

Cross-sections of the alpha mask.

in the 2D case, which can be applied to a less-structured solid texture (Figure 5.9b).

The alpha value drops off around the boundary of the mask, which makes the resulting

seams between pasted textures less noticeable. We found that an appropriate width

of this drop-off is about 5–10% of the texture size in our experiments.

It is difficult, however, to create an appropriate alpha mask manually for a highly

structured solid texture that preserves the important features of the texture. For now,

we assume all the textures in our examples are less structured, and therefore we use

a constant “splotch” mask shown in Figure 5.9 for all the textures. This assumption

often causes artifacts when using highly structured textures, which will be discussed

later.

Constructing a Frame Field

Regardless of the texture type, it is necessary to have a frame for each tetrahedron in

order to compute the final texture coordinates using the texture optimization algorithm

as described later. In the case of texture types 0-C and 1-B, we can naturally use

the user-specified frame field. In the case of texture types 0-B and 1-A, however,

the user has specified only a vector field (as the gradient of a depth field in the

case of texture type 1-A), leaving an unresolved freedom about the rotation around

that direction. Therefore, for each patch-pasting operation, we randomly choose an

arbitrary 3D vector and orthogonalize it with the user-specified vector field at every

location, resulting in a temporary frame field. In the case of texture type 0-A, we just

randomly choose an arbitrary frame and regard it as a constant frame field.

The magnitude of the frame (i.e., the length of its three 3D vectors) determines

the spatial extent of the resulting texture in the object space. Thus, a local frame

defined as above, which has unit length, needs to be multiplied by an appropriate

scaling factor, which is obtained as a user-specified texture scaling field in the case of

texture types 0-A, 0-B, and 0-C, or derived automatically from the depth field in the

67

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

case of texture types 1-A and 1-B (as discussed later).

The frame field is initially stored on the tetrahedral mesh vertices. For each tetra-

hedron, we simply assign an average of frames of its four vertices. In the case of texture

types 1-A and 1-B, the original depth field is kept and used as the final texture coor-

dinate in the depth direction, as described later.

Selecting a Seed Tetrahedron

We first initialize a list of “uncovered” tetrahedra with all the tetrahedra in the mesh.

For each pasting operation, one is selected at random from this list as a seed tetra-

hedron. After the pasting operation, tetrahedra are removed from the list if they are

completely covered by the previously pasted textures. We repeat this process until

the “uncovered” list becomes empty. In the case of manual pasting of the textures,

the seed tetrahedron is set to the one clicked by the user.

Growing a Clump of Tetrahedra

We first map the seed tetrahedron from the object space into the texture space, so

that its mapped frame axes align with the standard axes of the texture space, and its

transformed central position is located in the center of the texture.

Let (R,S,T) be the three orthogonal vectors of the frame associated with the seed

tetrahedron T . We first compute barycentric coordinates r1, . . . , r4 on T to represent

R as

r1v1 + r2v2 + r3v3 + r4v4 = R

r1 + r2 + r3 + r4 = 0

where v1, . . . ,v4 are the four vertices of T . We do the same with S and T . We then

compute the transformed vertex positions w1, . . . ,w4 in the texture space by solving

the following equations

r1w1 + r2w2 + r3w3 + r4w4 = (1, 0, 0)T

s1w1 + s2w2 + s3w3 + s4w4 = (0, 1, 0)T

t1w1 + t2w2 + t3w3 + t4w4 = (0, 0, 1)T

c1w1 + c2w2 + c3w3 + c4w4 = (0.5, 0.5, 0.5)T

where c1, . . . , c4 are the barycentric coordinates on T , which represent the position

inside T where the center of the texture should be. In the case of automatic filling,

68

5.3. Algorithm

the position is set to the barycenter of T (i.e., c1 = · · · = c4 = 1
4), while it is set to the

user-specified position in the case of manual pasting. After appropriate transformation

of vertex positions, we finally compute an affine transform matrix M that maps vi to

wi.

Next, we grow the clump by adding adjacent tetrahedra. We visit each tetrahedron

around the clump and add it to the clump if the tetrahedron satisfies the following

two conditions: its frame is not markedly different from that of the seed, and it is

partially inside the alpha mask in the texture space when transformed by M .

Texture Optimization

The purpose of texture optimization is to warp the texture so that it aligns locally

with the frame field. More precisely, for each tetrahedron in the clump, we minimize

the difference between the frame axes of the tetrahedron transformed into the texture

space and the standard texture coordinate axes.

The input to this process is a clump of tetrahedra {Ti} and its associated frames

{(Ri,Si,Ti)} (i = 1, . . . , n). The output is the 3D texture coordinates {wj} for all

the vertices {vj} (j = 1, . . . ,m) in the clump.

For each Ti, we first compute the barycentric coordinates rik, which represent Ri in

the same way as in growing clump of tetrahedra described above. We then define the

difference vector di
r between the transformed frame axis R′

i and the standard texture

axis r̂ as

di
r = ri1wj1 + ri2wj2 + ri3wj3 + ri4wj4 − (1, 0, 0)T

where j1, . . . , j4 are the indices of the four vertices of Ti. We do the same for the s and

t directions (Figure 5.10). We minimize all these difference vectors, while satisfying

the positional constraint given to the seed tetrahedron in the same way as growing

clump of tetrahedra described above. The optimized solution {wj} can be obtained

quickly in a least squares sense by solving a sparse linear system.

Note that the optimization may warp the texture coordinates such that the image

of the clump in the texture space no longer fully covers the splotch mask. In such

cases, we add the lacking tetrahedra to the clump and re-compute the optimization.

Coverage Test of Tetrahedron

The original 2D method [85] used a rasterization technique to test the coverage of

overlapping textures. We perform a similar computation over sampling points inside

the tetrahedra. We first create several predefined discrete sampling points (165 points

69

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

transform

object space texture space

Figure 5.10: The optimization minimizes the difference vectors di
r,d

i
s,d

i
t between the

texture coordinate axes (r̂, ŝ, t̂) and the transformed frame axes (R′
i,S

′
i,T

′
i).

Figure 5.11: A set of 165 sampling points inside a tetrahedron for testing the texture

coverage information.

in our current prototype) inside each tetrahedron in the mesh (Figure 5.11). Each time

a texture is pasted, we sample the alpha values of the mask at these discrete points

of each tetrahedron in the clump, which are then accumulated. If the accumulated

alpha values of all the sampling points of a tetrahedron reach 255, we assume that the

tetrahedron is completely covered by the overlapping texture patches.

Creation of Depth-Varying Solid Models

We create depth-varying solid models by arranging a depth-varying solid texture so

that it aligns with the depth field defined over the target 3D model. The basic concept

is to map the clump of tetrahedra into the corresponding depth position in the texture

space instead of the central position. To achieve this, we alter the positional constraints

in the process of growing a clump of tetrahedra and in the texture optimization process

from (0.5, 0.5, 0.5)T to (0.5, dseed, 0.5,)
T , where dseed is the depth value assigned to

Tseed assuming the s-axis corresponds to the depth orientation. However, a problem

70

5.3. Algorithm

(a) (b)

Figure 5.12: (a) A problem occurs if we use only a single alpha mask. (b) The use of

three types of alpha mask solves this problem.

(a) (b) (c)

Figure 5.13: Three types of alpha mask: (a) outer part, (b) middle part, and (c) inner

part.

occurs when we paste textures onto the inner and outer parts of the model (Figure

5.12a), because the alpha mask covers only the middle part of the texture.

To solve this problem, we prepared solid textures corresponding to different layers

of the original texture, each with different alpha masks (Figure 5.13). These were

created by simply applying the same alpha mask to different places (outer, middle,

and inner). In the texture pasting process, an appropriate texture is chosen from these

three according to the depth value of the seed tetrahedron (Figure 5.12b).

The depth values defined over the 3D model can be used directly as the texture

coordinates of the depth direction, so we only solve for texture coordinates of the other

two directions. We have also found that the appropriate texture scaling is the inverse

of the magnitude of the depth gradient vector. This can be explained as follows.

Suppose we have a large depth gradient vector at a certain position in the 3D model.

This means that the depth value changes rapidly there, which also implies that the

region corresponds to the thin part of the 3D model. Therefore, the texture scale

should be small.

71

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

5.4 Results

Figure 5.14 shows some examples of volumetric models created using our approach.

We can observe consistency among different cross-sections of these models, which was

not possible in Owada et al.’s volumetric illustration method [76] as their method

performs randomized 2D texture synthesis every time the model is cut. Models of

kiwi fruit and watermelon contain many seeds, which would cause artifacts in the

work of Pietroni et al. [83] as their method spatially interpolates a few 2D cross-

sectional images placed in 3D space. Texture type 1-B is used to create models of kiwi

fruit, carrot, and tree. Appearances of their cross-sections differ depending on the

slicing orientation with respect to the central axes of their depth fields. Most textures

of types 1-A and 1-B in our results have a thin (1–3 voxel thickness) slice of outer skin,

and our depth adjustment technique arranges solid textures successfully so that such

outer skin regions align precisely with the surfaces of the models. Cross-sectioning

is faster than run-time synthesis approaches because the computation only involves

linear sampling of texture coordinates. We can create more interesting solid models

such as models of strata and cake by combining several LST models together. We can

also perform volume rendering on translucent LST models, as shown in the model of a

tube made of white oriented particles, which is impossible in Owada et al.’s volumetric

illustration method [76]. This result was obtained by taking 200 slices from the model,

a process that took about 3s. Our method can be extended easily to support other

channels of textures, and we show the displacement mapping results in Figures 5.14c

and 5.2d where the grayscale displacement map channel is shown next to the RGB

texture. This is done by first subdividing the surface mesh and then moving each

vertex along its normal direction according to the displacement value sampled there.

We implemented our prototype system using C++ and OpenGL on a notebook PC

with a 2.3-GHz CPU and 1.0 GB of RAM. The statistics of our results are summarized

in Table 5.1, which shows that our method is fairly inexpensive in terms of both

computation and memory for representing large-scale solid models. It took a relatively

long time to fill the cake model, because the model has a large thin sponge region that

requires pasting a large number of texture patches. However, the rendering and cross-

sectioning can still be performed in real-time.

72

5.4. Results

(a) (b)

(c)

(e)

(d)

(g)(f)

Figure 5.14: Resulting volumetric models filled with overlapping patches of solid

textures: (a) kiwi fruit, (b) carrot, (c) tree (the grayscale texture represents the dis-

placement map channel), (d) volume rendering of a fibrous tube, (e) watermelon, (f)

strata, and (g) cake. Note that the input solid textures include surface textures as

well as interior textures.

73

Chapter 5. Raster-Based Method for Representing Detailed Internal Structures

using Anisotropic Solid Textures

Title Tetra Ori [sec] Fill [sec] Cut [msec] Size [MB]

Kiwi fruit 4126 29 39 78 9.1

Carrot 2313 38 31 63 7.1

Tree 5012 76 104 125 12.2

Watermelon 2717 17 25 63 9.0

Tube 1089 27 18 31 2.7

Strata 2827 113 77 110 10.4

Cake 2734 34 416 187 14.5

Table 5.1: Statistics of our results. Column describe (from left to right): title, number

of tetrahedron, time for modeling orientation field, time for automatic filling, time for

cross-sectioning (without subdivision), and total data size of LST model (including

texture exemplars). The size of texture exemplars was 643 throughout.

5.5 Limitations

Our method inherits the limitations of the original method [85]. First, the patch

seams become noticeable when using a texture with strong low-frequency components.

Second, artifacts appear around singularities of the frame field, such as the center of a

depth-varying object with a radial axis (Figure 5.15). This can be alleviated by locally

subdividing tetrahedra in such areas. Finally, as we use a constant “splotch” mask

for all the textures, blurring artifacts appear when a highly structured texture is used

(Figure 5.16). It is necessary to create an appropriate alpha mask that preserves the

structure of the texture as much as possible, and this may be achieved by extending

the existing 2D contour detection technique [51] to 3D. It is also necessary to consider

the alignment between texture patches to avoid misalignment artifacts (Figure 5.16c).

Soler et al. [95] proposed hierarchical pattern mapping, which considers the coherence

between texture patches on surfaces, but extending their technique to 3D solid appears

to be non-trivial.

74

5.5. Limitations

Figure 5.15: Artifacts occurring at singularities of volumetric frame fields.

(a) (b) (c)

Figure 5.16: Failure case with a highly structured texture. (a) A curved cylinder filled

with bricks shows (b) blurring and (c) misalignment artifacts.

75

Chapter 6

Vector-Based Method for Representing

Smooth Color Transitions using Colored 3D

Surfaces

In our raster-based method presented in the previous chapter, we assumed that the

input texture exemplar is less structured, making the approach suited for modeling

objects that can be well described as a collection of small-scale texture details, such as

carrots and tree stumps. However, the approach is problematic when using structured

texture exemplars such as brick wall, causing artifacts such as blurring and misalign-

ment of structural features, as shown in Figure 5.16. Furthermore, it is unclear how the

approach can be used to model volumetric objects that have global and distinct inter-

nal structures distributed non-uniformly, such as tomatoes, strawberries, and apples

(Figure 6.1).

To enable volumetric modeling of such objects, we propose a vector-based method

Figure 6.1: Examples of modeling target in this chapter which are difficult for our

raster-based method described in the previous chapter.

76

diffuse

Figure 6.2: The concept of the DSs representation. A set of colored surfaces (left)

defines a volumetric color distribution (right) by diffusing colors in 3D space.

in which we do not use either volumetric orientation field or 3D texture exemplars.

Instead, we model volumetric objects using a new representation called Diffusion Sur-

faces (DSs). In our DSs representation, a model is defined as a set of 3D surfaces with

colors assigned to both of their front and back sides. A volumetric color distribution

is defined as a diffusion of colors from these surfaces through the volume. This way,

global and distinct volumetric structures can be well represented (Figure 6.2).

This approach is in accordance with our Principle I for volumetric modeling (i.e.,

“propagating user-specified information on the surfaces through the volume”) in that

we let the user paint colors on such 3D surfaces which are then propagated though the

volume. We also make use of our Principle II for volumetric modeling (i.e., “exploit-

ing structural regularities to achieve compact representations and fast algorithms”) by

regarding the smoothness of volumetric color transitions as the structural regularity.

This regularity allows us to compactly represent a volumetric model with only a sparse

set of colored 3D surfaces. In addition, it also enables a fast algorithm for diffusing

colors through the volume, which will be detailed later.

The DSs representation is conceptually an extension of Diffusion Curves (DCs)

[72], a vector graphics representation for 2D images, to 3D volumes. Thus, our rep-

resentation inherits the same advantages of the DCs representation: compactness and

editability. We emphasize that these advantages are even more pronounced when ex-

tended to volumetric modeling in our case. If we use a raster-based representation

(i.e., voxel grid) to store the volume, the amount of data needed grows rapidly as the

resolution increases, easily using up all the available memory. From the user’s point of

view, manually painting colors over a 3D voxel grid is fundamentally much more diffi-

cult than painting over a 2D pixel grid, and thus sparse editable vector representation

is much desired for volumetric modeling.

In the DCs approach, color diffusion is computed by solving a Poisson equation

over a 2D pixel grid, where the colors specified along the curves serve as Dirichlet

77

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

boundary conditions. Directly extending this method to 3D volumes is costly both in

terms of computation time and memory consumption; to achieve high-quality results,

high-resolution voxel grids or tetrahedral meshes are required (especially in order to

faithfully represent complex volumetric models), and precomputing and storing the

resulting color information is computationally expensive. Instead, we propose to in-

terpolate colors only locally at cross-sectional locations using a modified version of the

positive mean value coordinates (PMVC) algorithm [60], enabling us to generate high-

resolution cross-sections efficiently. Our method produces consistent volumetric color

distributions comparable to Poisson solutions, and at the same time saves the effort of

computing the entire color volume at once, eliminating the necessity of precomputa-

tion. The resulting framework is suitable for trial-and-error modeling processes where

volumetric structures can be interactively added, removed, edited, and explored, which

is indispensable for creative interactive modeling.

The process of modeling the shapes and colors of the DSs is independent of the

representation, such that any general-purpose modeling tools can be used to create

DSs for arbitrary objects (e.g., fruits, vegetables, organs, or geological structures).

However, modeling and spatially positioning the required number of intricate and

nested geometric components using existing tools is often difficult and time-consuming.

Thus, we leverage the fact that many objects exhibit rotational symmetries in their

internal structure, and design a sketch-based interface tailored for this purpose. Fruits,

vegetables, and other familiar objects fall into this category of volumetric structures.

Our interface assumes and exploits rotational symmetries, which greatly simplifies the

modeling process. The interface also enables generating random variations of models,

which is particularly useful for scenes containing a large variety of similar objects.

Using DSs, we are able to create a variety of volumetric models not possible with

our raster-based method. As we ignore all the small-scale texture details, the plain

rendering of DSs produces rather too smooth appearances. Thus we apply several sim-

ple non-photorealistic rendering (NPR) techniques to DSs to increase the expressivity

of the plain rendering of DSs. Note that the information about internal structures

encoded by DSs is helpful for such NPR effects.

6.1 Related Work on Vector Graphics

Our work is partly inspired by the recent developments of vector graphics techniques.

Vector graphics approach essentially aims at representing objects in 2D images with

only a sparse set of information about the overall structure and color. Our basic moti-

78

6.1. Related Work on Vector Graphics

vation is that such vector graphics approach should also be well suited for volumetric

modeling, because sparseness is a desired property for volumetric representations.

There are a few different approaches in 2D vector graphics. Here we briefly review

two representative techniques that became popular recently: gradient meshes (GMs)

and diffusion curves (DCs), and discuss their strengths and weaknesses to justify why

we chose to extend DCs to 3D volumes. In addition, we also mention other recent

approaches to vector representations for 3D volumes.

6.1.1 Gradient Meshes

The GMs technique was first introduced in Adobe Illustrator in 1998 and subsequently

in Corel CorelDraw in 1999, without its technical details being reported publicly. Since

then, surprisingly, no research about the GMs technique has been conducted until Sun

et al.’s work in 2007 [97]. Because there was no publicly available documentation

about the definition of GMs, they first gave the formal mathematical definition for

GMs as follows. A gradient mesh is a regular quad mesh consisting of Ferguson

patches [29] which is a cubic function m(u, v) defined on the 2D parameter domain as

m : [0, 1]2 7→ R. m(u, v) can be used to represent general quantities, and in this case

it is used to represent geometry (i.e., x and y coordinates) and color (i.e., RGB color

channels). The user specifies its value and partial derivatives mu, mv, and muv at

each of its four control points {(i, j) | i, j ∈ {0, 1}} as mij , mij
u , m

ij
v , and mij

uv. Then,

its value at an arbitrary parametric location (u, v) ∈ [0, 1]2 can be computed as:

m(u, v) = (1 u u2 u3)CQCT

1

v

v2

v3

where C =

1 0 0 0

0 0 1 0

0 3 −2 −1

0 −2 1 1

 and Q =

m00 m01 m00

v m01
v

m10 m11 m10
v m11

v

m00
u m01

u m00
uv m01

uv

m10
u m11

u m10
uv m11

uv

.

For controlling the geometry, the user moves control handles displayed on the

screen to specify mij , mij
u , and mij

v . For controlling the color, the user specifies color

values (i.e., mij) of control points while the derivatives (i.e., mij
u and mij

v) are set

automatically according to the color values of adjacent control points. The freedom to

specify mij
uv is not much useful in practice, so mij

uv is always set to zero. Since any pair

of adjacent Ferguson patches share the same control points, the function is smoothly

79

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

Figure 6.3: A simple example of gradient mesh consisting of four Ferguson patches.

continuous across the whole mesh. The user carefully designs the topologies and

layouts of GMs such that they align well with the target objects in the image, which

is often an extremely time-consuming process. Figure 6.3 shows a simple example of

gradient mesh consisting of four Ferguson patches.

Sun et al. [97] proposed a method for semi-automatically generating high-quality

optimized GMs based on user-specified initial layouts of GMs by solving nonlinear

least-squares problem (Figure 6.4 top). Later, Lai et al. [57] proposed a fully auto-

matic method for generating GMs for a given input image (Figure 6.4 bottom). Their

representation is topologically more flexible than the standard GMs representation

allowing holes in the mesh. Their key idea is to utilize recent mesh parameterization

techniques for image vectorization.

6.1.2 Diffusion Curves

The approach of diffusion curves was proposed by Orzan et al. in 2008 [72]. Their

basic idea, which is inspired by Elder’s seminal work in 1999 [26], is to represent

objects in images using edges instead of regions as in the GMs approach. In the DCs

representation, the user directly specifies properties of each edge: the two colors on its

left and right sides, and the amount of blur that controls its sharpness. Specifically,

the user can draw a set of curves freely (Figure 6.5a), and for each curve the user

can specify a set of three continuously varying values along the curve: the left and

right side color (Figure 6.5b) and the blur (Figure 6.5c). Given such information,

the system first diffuses the curve colors over the entire image, and then performs

spatially-varying blur on the resulting image to obtain the final image (Figure 6.5d).

Mathematically, a diffusion curve is defined over the 1D parameter space T := [0, 1]

with associated attributes consisting of:

• its geometry (i.e., x and y coordinates) P : T 7→ R2,

80

6.1. Related Work on Vector Graphics

input image initial layout
of GM

optimized GM rendering of GM

input image generated GM rendering of GM

Figure 6.4: Two recent approaches by Sun et al. [97] (left) and Lai et al. [57] to image

vectorization using gradient meshes.

(a) (b) (c) (d)

Figure 6.5: Definition of a diffusion curve. In addition to its geometry in the form of

standard Bezier splines (a), it also has continuously varying values of colors on its left

and right sides (b) and blur (c). The final image is obtained by diffusing the curve

colors and then performing spatially-varying blur (d).

• its left and right side colors (separate for each of RGB color channels) CL : T 7→ R

and CR : T 7→ R,

• and its blur Σ : T 7→ R.

These parametric functions can be expressed in any forms such as piecewise linear

segments or cubic Bezier splines.

Since the processes of color diffusion and spatially-varying blur over the entire

image are both computationally expensive, Orzan et al. propose to implement these

on the GPU to achieve real-time performance that enables interactive drawing by

81

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

the user. There is an issue when implementing a color diffusion solver on the GPU;

ideally, a point on a diffusion curve should define two different color constraints at

the same location, which cannot be handled well by the standard GPU’s rasterization

functionality. Therefore, they propose to slightly move the two color constraints apart

from each other along the curve normal, and set a color gradient constraint on the

original curve point. Because of this strategy, the color diffusion can now be computed

by solving a Poisson equation.

Figure 6.6 shows an overview of the entire process. The curve geometry is first

duplicated and displaced along its normal with a small distance, resulting in a pair

of left and right side curves as PL : T 7→ R2 and PR : T 7→ R2, respectively (Figure

6.6a). An image I(x, y) resulting from color diffusion, called sharp color image, can

be obtained by solving the following Poisson equation:

∆I = divw

subject to

I|PL(t) = CL(t), I|PR(t) = CR(t), ∀t ∈ T,

where ∆ and div are the Laplacian and divergence operators, respectively, and w(x, y)

is a 2D vector field defined as

w(x, y) =

(CR(t)− CL(t))
PR(t)−PL(t)

∥PR(t)−PL(t)∥ (x, y) = P (t), t ∈ T

0 otherwise
,

as shown in Figure 6.6b. Next, an image B(x, y) resulting from diffusing the blur over

the entire image, called blur map, can be obtained by solving the following Laplace

equation:

∆B = 0

subject to

B|P (t) = Σ(t), ∀t ∈ T,

as shown in Figure 6.6c. The final image is obtained by applying spatially-varying

blur to the sharp color image I with the blur kernel size proportional to the blur map

B, as shown in Figure 6.6d. Orzan et al. also proposed a simple method for automatic

image vectorization which generates DCs from a given raster image by extracting and

merging the image edges using the scale-space approach.

Orzan et al.’s work was so influential that many researchers subsequently explored

various extensions. Jeschke et al. proposed variable stencil size Laplacian solver [47]

82

6.1. Related Work on Vector Graphics

diffusion curve

blur sources

color sources ()

sharp color
image ()

blur map ()

final image

(a) (b)

(c)

(d)

Figure 6.6: An overview of the entire process of rendering a diffusion curve.

which makes the color diffusion much more robust and simpler to implement, and also

proposed a method to use DCs for texturing 3D surfaces [48]. Bezerra et al. modified

the Poisson formulation to achieve more control over the color diffusion process [3].

Bowers et al. proposed a ray tracing approach to diffusing colors [7]. Finch et al.

demonstrated the ability of higher-order biharmonic interpolant for providing more

detailed and intuitive controls over the color diffusion [30]. A few researchers explored

other curve attributes in addition to colors. Winnemoller et al. proposed to add 3D

normal vector and 2D texture coordinate to the curve attributes to achieve relighting

and texture draping, respectively [115]. Jeschke et al. proposed a combination of

DCs and procedural Gabor noise [56] along with a simple scheme for estimating noise

parameters from an input image [46].

6.1.3 Gradient Meshes vs. Diffusion Curves

In terms of topological flexibility, the DCs approach is more desirable than the GMs

approach. In the GMs approach, the user needs to carefully design the topologies

of regular quad meshes, while in the DCs approach she can draw freeform curves in

arbitrary ways.

In terms of computational cost, the GMs approach is more favorable than the

DCs approach. In the GMs approach, a Ferguson patch defines its color distribution

explicitly as cubic interpolation which is easy to compute. In contrast, the DCs repre-

sentation defines its color distribution implicitly as the solution to the color diffusion

problem which is more sensitive to small differences in particular solver implementa-

tions and configurations of boundary conditions. Although several alternative solvers

have been proposed subsequently [47, 7, 30], the high computational cost involved in

computing the color diffusion is inevitable. This makes it difficult to render vector

83

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

images in the DCs representation on devices with limited computational resources

such as mobile phones. Partly because of this high computational cost, the DCs rep-

resentation has not yet been integrated so far into any of the popular vector graphics

packages such as Adobe Illustrator and Corel CorelDraw.

We chose to extend the DCs approach to 3D volumes because of its advantage of

topological flexibility. To alleviate the high computational cost which becomes even

higher when extended to 3D volumes, we propose a method to obtain approximate

solutions locally with low computational cost based on the positive mean value coor-

dinates algorithm [60].

6.1.4 Vector Graphics for Volumes

As mentioned in Chapter 3, a few researchers recently explored vector representations

for 3D volumes [111, 110, 120]. All of these methods divide the space into disjoint

regions using signed distance fields, and fill each region with a smoothly-varying color

distribution. Our main difference from these is that we do not necessarily partition

the volume into disjoint regions, thus allowing open-ended boundaries and not needing

to store signed distance fields. Also, we define the volumetric color distribution as

the color diffusion from 3D surfaces, which we believe is more intuitive and easier

to control than Wang et al.’s approach using RBF [111, 110]. Note that both of

Wang et al.’s two techniques [111, 110] are not extensions of any existing 2D vector

graphics representations, while Zhang et al.’s technique [120] is an extension of the

GMs approach to 3D volumes.

6.2 Diffusion Surfaces

In the following, we describe our basic primitive for volumetric modeling, called a

diffusion surface (DS), and describe an efficient algorithm for computing and rendering

cross-sections of volumetric objects represented by DSs.

6.2.1 Definition

DSs extend diffusion curves (DCs) to 3D volumes by replacing 2D curves with 3D sur-

faces. A DS is a triangle mesh in which each mesh vertex has the following attributes:

colors on its front and back sides and a blur value. A DS diffuses its colors on either

side, and the softness of the color transitions between the front and the back sides of

the surface is controlled by the blur values (Figure 6.7).

84

6.2. Diffusion Surfaces

(a) (b) (c)

Figure 6.7: A DS is a surface with colors on either side and blur values (a). The blur

radii are depicted as white circles. (b) The surface is duplicated into two sheets, which

are moved apart along the normals by the blur radius distance. (c) Colors from both

sheets are smoothly diffused in space.

Unlike DCs in which the blur is applied after diffusion as a post process, the blur

in DSs is achieved by duplicating each DS into two surface sheets (one for the front

and one for the back side), and moving the sheets apart along the surface normal

directions by the distances explicitly specified as the blur values (Figure 6.7). This is

because DSs are not a voxel-based representation, and the post-process blur of DCs

cannot be applied to DSs. Our blur may be less smooth, but we found it sufficiently

smooth in practice.

6.2.2 Algorithm for Generating Cross-Sections

Our goal is to generate a cross-section with colors diffused from DSs when the user

cuts the model at an arbitrary location. A straightforward way to achieve this is to

compute the entire volumetric color diffusion by solving a Poisson equation over a voxel

grid or a tetrahedral mesh, similar to DCs. However, this approach lacks scalability

and becomes too expensive for complex models, as discussed in detail in Section 6.2.3.

Thus, we propose to compute color diffusion locally at cross-sectional locations using

positive mean value coordinates [60] (PMVC). This is inspired by the work of Farbman

et al. [27] where the Poisson solution was replaced by mean value coordinates [32] to

accelerate various image editing tasks. The actual process of our algorithm consists of

two steps: cross-sectional mesh generation and color diffusion using PMVC.

85

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

interior vertices

cut vertices

 cut
segments

DSs

Cutting surface

duplicate
vertices (back)

duplicate
vertices (front)

(b)
(a)

(c)

Figure 6.8: Cross-sectional mesh generation. Given DSs and a cutting surface (a), the

system triangulates the cutting surface (b) and splits the mesh connectivities (c).

Cross-Sectional Mesh Generation

The system first generates a cross sectional mesh when the user cuts the model. Given

a 3D cutting surface, all of its intersections with DSs are computed, forming a set of

line segments called cut segments (Figure 6.8a). The cutting surface is then tessellated

while preserving these cut segments using conforming 2D Delaunay triangulation [93],

which nicely adapts the mesh density to the size and placement of the DSs to alleviate

discretization artifacts. The cross-sectional mesh vertices that are not part of the

cut segments are called interior vertices (Figure 6.8b); their colors are computed by

diffusing colors from the DSs using PMVC, as explained later. Mesh vertices that lie

on the cut segments are called cut vertices; their colors are sampled directly from the

respective DSs. A cut vertex has two different colors (front and back) at the same

location, so it is necessary to split each cut vertex into duplicate vertices (Figure 6.8c),

divide the mesh connectivity along the cut segment, and assign the front and back

colors of the corresponding DS to each duplicate vertex appropriately. The rendering

is done simply by drawing mesh triangles with associated colors.

86

6.2. Diffusion Surfaces

Color Diffusion Using PMVC

Once the mesh is generated on the cross section, the system diffuses colors on the mesh

using PMVC. Given an interior vertex, our goal is to compute its color by interpolating

the colors of the DSs using PMVC. To do so, we first render all the DSs viewed from

the interior vertex to a cube map. This efficiently determines which parts of the DSs

are visible and how far they are from the interior vertex. The system then sums up all

the colors rendered on the cube map pixels, weighted by the inverse of the distances

obtained from the depth buffer. Note that the diffusion is consistent for any cut

surface, since the color information is obtained by integrating over the entire set of 3D

DSs.

While Lipman et al.’s original method [60] renders the mesh triangles into the cube

map using carefully tailored colors to compute coordinate values, our method renders

the actual colors of the DSs directly to the cube map since we only need interpolated

colors instead of coordinate values. This allows the integration of the cube map pixels

to be performed entirely on the GPU, significantly reducing the cost of both reading

the GPU memory back to the CPU and integrating cube map pixels on the CPU.

Our modification means that the cost of integrating cube map pixels is negligible and

the bottleneck becomes the cost of rendering DSs (roughly 99% of the total). Our

current unoptimized implementation renders all the mesh triangles of the DSs näıvely

per each interior vertex, but it could be greatly accelerated by parallelizing processes

for all interior vertices and using efficient spatial data structures [90].

Note that our technique of efficiently diffusing colors using PMVC is due to our

Principle II; it is made possible only by assuming the structural regularity of the

smoothness of the volumetric color distribution.

6.2.3 Comparison of PMVC and Poisson Diffusion

We compared our PMVC diffusion to a standard Poisson diffusion to demonstrate the

effectiveness of our approach. For the discretization of the Poisson equation, we used

unstructured tetrahedral meshes generated using TetGen [94] instead of regular voxel

grids, since tetrahedra can easily conform to DSs while voxels lead to rasterization

artifacts.

Figure 6.9 shows some comparison results. The quality of the Poisson diffusion

heavily depends on the resolution of the tetrahedral mesh. For relatively simple mod-

els (e.g., onions), low resolution meshes are sufficient to produce smooth diffusions,

but this does not hold for more complex models (e.g., persimmons). For such models

87

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

onion DSs Poisson, 540KB
pre: 3.2s, cut:0.4s

PMVC, 160KB
pre: -, cut:1.6s

persimmon DSs Poisson (low-res), 3.0MB
pre: 9.5s, cut:1.1s

PMVC, 160KB
pre: -, cut:1.6s

Poisson (high-res), 13.8MB
pre: 124s, cut:3.4s

Figure 6.9: Comparisons of our PMVC diffusion and Poisson diffusion. The precom-

putation time (denoted “pre:”) includes the tetrahedralization and solving the Poisson

equation. The storage sizes refer to the precomputed tet mesh with colors for Poisson

and the cross-section mesh with colors for PMVC.

we need to use denser volumetric meshes, which lead to a rapid increase in computa-

tional cost. In contrast, PMVC diffusion involves no volumetric meshing and no large

systems of equations, and thus scales well with the complexity of the model. The

visual differences between PMVC diffusion and Poisson diffusion are noticeable but

not significant. The run-time cutting using PMVC diffusion takes a bit longer than

that with Poisson diffusion, but this is mainly due to our unoptimized implementation

which can be further accelerated. PMVC diffusion also allows frequent switching be-

tween designing and browsing of DSs since it requires no precomputations for browsing,

which is highly desirable for trial-and-error modeling processes. This way, surfaces can

be interactively added, removed, and edited, and the results can be viewed without

delay. Additionally, Poisson diffusion has high memory consumption, since the en-

tire precomputed color volume needs to be stored, whereas PMVC diffusion does not

suffer from this problem. In summary, Poisson diffusion has some benefits but lacks

scalability, and therefore our PMVC diffusion process is better suited for interactive

modeling.

88

6.3. Creating Diffusion Surfaces

6.3 Creating Diffusion Surfaces

We focus on creating DSs from scratch rather than converting from scanned color vol-

ume data, since such data is not yet abundant. DSs are simple and basic primitives,

and therefore any existing 3D modeling tools can be used to create DSs represent-

ing arbitrary objects. However, modeling volumetric structures composed of many

nested surfaces using traditional tools can be difficult, time-consuming, and unintu-

itive. Thus, we chose to focus on a case study of objects with rotational symmetries,

and designed a sketch-based modeling interface especially tailored to such objects.

Particularly important classes of this kind are fruits and vegetables, since they are

one of the most common volumetric objects in our daily lives, and they often possess

intricate volumetric structures including both sharp and smooth color transitions. Our

assumption of rotational symmetry additionally enables synthesis of random variations

of models, which is useful for populating scenes with many similar objects, such as the

one shown in Figure 6.21.

The entire modeling process with our interface works as follows (Figure 6.10):

1. The user first sketches several 2D curves on both vertical and horizontal cross-

sectional images, and the system generates 3D surfaces by sweeping.

2. Optionally, the user can distribute predefined small grains over these sweep sur-

faces by specifying distribution parameters (the region to be populated by grains

and their density). The distribution proceeds automatically by dart throwing

while respecting a user-defined Poisson disc radius.

3. Next, the user paints colors and blur values on surface mesh vertices in the 3D

view. Colors can be sampled from the reference images.

4. Finally, the system instantly synthesizes random variations of the DSs model on

request.

We detail each of these steps below.

6.3.1 Symmetry-Aware Sketching Interface

We assume that representative horizontal and vertical cross-sections of the object

to be modeled with DSs are available as photographs or illustrations, to make it

easier on the user by providing a rough reference of the object’s shape and structure.

The user provides the system with a few guidance sketches that delineate the salient

structures of the object, and DSs are then generated from these sketches. Note that

89

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

Vertical sketching Horizontal sketching 3D surfaces

Grain distribution Color / blur Variation synthesis

Figure 6.10: Overview of our modeling interface for creating DSs.

our sketching interface also utilizes our Principle I for volumetric modeling in a sense,

because the user sketches on two surfaces characteristic to the internal structures (i.e.,

parallel/perpendicular to the symmetry axis) and then the system propagates such

information through the volume to form 3D surfaces.

We chose to let the user trace image features by sketching, instead of relying

on automatic feature detection algorithms, such as a Canny detector [9]. This is

because the feature detection would be very challenging especially for subtle features

on noisy cross-sectional images of fruits and vegetables, and also because we regard this

feature extraction task as the user’s creative design process, rather than an automatic

reconstruction problem. For the similar reasons, we let the user specify the information

about rotational symmetries, instead of using automatic algorithms for detecting them

[58].

Symmetry Types

We consider two types of rotational symmetry: cylindrical symmetry that refers to

objects the structures of which remain mostly the same after any amount of rotation

around the axis of symmetry (e.g., strawberries and avocados), and N-fold symmetry

that refers to objects having N repetitive structures around the axis of symmetry (e.g.,

tomatoes and okra) (Figure 6.11). We provide a similar, but separate, user interface

for these two types of symmetry as described below.

90

6.3. Creating Diffusion Surfaces

Cylindrical symmetry
(e.g., strawberry)

N-fold symmetry
(e.g., tomato)

Figure 6.11: Two types of rotational symmetry in our user interface.

Cylindrical Symmetry

The user first loads an image of a vertical cross-section (i.e., a plane parallel to the

axis of symmetry) and adjusts its position. We assume that the axis of symmetry is

always straight, depicted as a green line in Figure 6.12a. The user then draws several

curves representing geometric features on the image. The user is allowed to draw only

on the right-hand side of the axis. If an endpoint of a curve is close enough to the

axis, it is snapped to the axis. Several curve-editing tools, such as deformation and

smoothing [40], are provided for convenience. An automatic curve fitting algorithm

[51] would assist the user’s sketching even more, which is not yet implemented.

The user next loads an image of a horizontal cross-section (i.e., a plane perpendic-

ular to the axis of symmetry) and adjusts its position. Then, the user draws curves on

the horizontal cross-sectional image corresponding to the curves on the vertical cross-

section drawn previously (Figure 6.12b). The axis of symmetry is shown as a point,

and the user must draw closed loops surrounding this point. Given pairs of vertical

and horizontal curves, the system generates 3D surfaces by sweeping horizontal curves

along the axis of symmetry with an appropriate scale and position, according to the

vertical curves (Figure 6.12c).

We made the assumption of the axis of symmetry being straight in order to sim-

plify the user interface. The modeling of objects with curved axes of symmetry could

be possible by, for example, simply applying space warping or shape-preserving defor-

mations as a post-process.

91

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

(a) (b) (c)

Figure 6.12: Sketching interface for the case of cylindrical symmetry.

(a) (b)
A

B

C

D

A

B

C
D

Fold angle

Type I

Type II

(c)

A

B C

D

Figure 6.13: Sketching interface for the case of N -fold symmetry.

N-fold Symmetry

In this case, we classify features into two types: Type I, which surrounds the axis of

symmetry (e.g., the outer skin of a tomato); and Type II, the geometry of which is

included entirely within a single fold (e.g., an inner chamber of a tomato), as depicted

in Figure 6.13. The modeling process for Type I geometry is almost the same as for the

case of cylindrical symmetry described above, except that the user must specify the

number of folds, N , and adjust the fold angles appropriately when drawing horizontal

curves (Figure 6.13b).

For the Type II geometry, the user draws a closed loop in the vertical cross-section,

as well as a set of N closed loops, each of which is entirely included within a single

fold in the horizontal cross-section. In this case, the system generates 3D surfaces by

first dividing each vertical curve into two at its top and bottom, and then sweeping

the corresponding horizontal curve along these two curves (Figure 6.13c).

Partial Deletion: We sometimes require only portions of the surfaces generated by

sweeping (Figure 6.14). Our system allows the user to remove any unwanted parts by

simply sketching a cutting stroke as depicted in Figure 6.14.

92

6.3. Creating Diffusion Surfaces

Figure 6.14: Partial deletion of surfaces generated by sweeping.

6.3.2 Modeling of Small Grains

Fruits and vegetables often contain many small grains covering some base surface

regions (e.g., the seeds in a tomato). These cannot be modeled well with the interface

described above, because their arrangement is not actually governed by the rotational

symmetry. Thus, our system provides a specialized interface for such objects. The

user first selects a vertical curve corresponding to the base surface over which grains

will be distributed, and then draws a pair of curves near the selected curve (Figure

6.15a). The user then draws a closed loop representing the swept profile of the grain

geometry (Figure 6.15b). Given these curves, the system generates a 3D surface by

simple sweeping, which is transformed to a canonical position (Figure 6.15c). Next,

the user specifies the region of the base surface where grains are distributed using

a sketching interface (Figure 6.15d), and the radius of Poisson disk sampling as the

distribution density (Figure 6.15e). The system can then distribute grains over the

specified base surface region with the specified density by dart throwing (Figure 6.15f)

[12]. The coordinate frame of each distributed grain is determined by the normal

orientation of the base surface and the axis of symmetry orientation. The user can

also adjust either the scale of the grain geometry or its offset from the base surface, if

necessary.

6.3.3 Surface Attributes

Each mesh vertex of DSs is associated with two attributes: color and blur. While

extracting colors and blur values along feature curves on images could be possible [72],

we do not opt for this approach because it is not clear how to assign colors and blur

values to 3D mesh vertices based on those values assigned to the pairs (vertical and

horizontal) of 2D curves. Therefore, we chose to let the user paint these attributes

directly on 3D mesh vertices.

93

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

(a)

selected
curve

(b) (c)

(d) (e) (f)

Figure 6.15: Modeling of small grains.

Laplacian
smoothing

Flip
front/back

(a) (b) (c)

Figure 6.16: User interface for painting colors.

Colors: The user can choose the current color using either a dialog box or picking

up a pixel color from an image. The user can assign the current color to surface

mesh vertices by dragging the mouse over them (Figure 6.16a). These vertices are

treated as being constrained, and colors at unconstrained vertices are obtained using

Laplacian smoothing (Figure 6.16b). The user can switch the flag of two-sided colors

(i.e., whether different colors can be assigned to the front and back side of the surface)

on and off. The user can flip the front and back colors for surfaces with two-sided

colors (Figure 6.16c) for convenience. Note that the DSs representation does not allow

vertices at open boundaries to have two-sided colors, since they are adjacent to both

the front and back side.

Blur values: Unlike the case of diffusion curves where the blur effect is achieved

by applying spatially-varying blur kernels [72], our system achieves a similar effect

94

6.3. Creating Diffusion Surfaces

Without blur With blur

(a) (b)

Blur value
constraints

Figure 6.17: Blur effects.

Figure 6.18: Variation synthesis results for cylindrical symmetry (top, onion) and

N -fold symmetry (bottom, tomato).

in 3D by duplicating the DSs and moving them in the surface normal directions by

some distance explicitly specified by the user (Figure 6.7). Similar to the case of

specifying colors as described above, the user can specify blur values at several vertices

as constraints, and the system performs Laplacian smoothing to obtain blur values at

unconstrained vertices (Figure 6.17b). Note that our system currently does not support

a mix of blurred and unblurred regions within a single surface, because this would lead

to a non-manifold surface.

6.3.4 Synthesis of Random Variations

The system synthesizes the horizontal curve geometries, while other information, such

as the vertical profile curves, remain fixed. We analyze and synthesize the horizontal

curves in a 2D polar coordinate system whose origin is the axis of symmetry. The

process differs depending on the type of symmetry.

In the case of cylindrical symmetry (Figure 6.18 top), the curve geometry is first

uniformly resampled. Then for each curve point, we sample its radius along with the

angular difference from its next curve point. This forms a 1D cyclic array each element

95

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

of which is a pair of radius and angular difference. This array can be regarded as a

1D texture sample. We thus simply apply a texture synthesis algorithm [17] on this

sample to generate a new randomized 1D array, resulting in a new randomized curve

geometry.

In the case of N -fold symmetry (Figure 6.18 bottom), we use an approach similar

to the morphable face model [5]. The system first takes N samples of feature vectors,

each representing geometries within a fold, then performs a principal component anal-

ysis over these samples, and finally blends the principal vectors linearly with random

coefficients.

The feature vectors are computed as follows. For the Type I geometry, the curve

is split at every fold line, forming a set of N open curves. These open curves are

then uniformly resampled with the same number of points and transformed into a

canonical space (i.e., a pie-shaped space with the angle of 2π/N). Finally, the curve

points are concatenated into the feature vectors. For the Type II geometry, the set of

N curves is evenly resampled and then transformed into the canonical space. Then

the correspondences among curve points are obtained based on the sums of Euclidean

distances. Finally, the curve points are concatenated into the feature vectors. Note

that after synthesizing feature vectors, the Type I geometries (open curves) are blended

linearly across each fold line to ensure the continuity among adjacent folds.

All synthesized geometries share the same mesh connectivity with the original

so that they can use the same attribute data, such as colors and grain distribution

parameters associated with surface meshes.

6.4 Results

We have created numerous DSs models using the proposed interface (Figure 6.19).

Photorealistic rendering of real-world objects using DSs is challenging, since the cur-

rent representation lacks texture detail information. That said, since DSs explicitly

represent volumetric structures via 3D surfaces and blur values, a variety of rendering

styles can be easily applied. We have experimented with simple non-photorealistic

rendering (NPR) techniques (Figure 6.20) that highlight the internal structures and

are more illustrative and expressive than the plain color rendering. We have employed

artistic silhouettes [71] and color modulation based on 3D Perlin noise [81] with man-

ually adjusted weights on different frequency bands based on the unmodulated color.

Note also that the readily available structure representation allows rendering cross-

sections with concavities or hollow spaces, as visible in the okra and pepper models,

96

6.4. Results

Figure 6.19: DSs models created using our user interface. Here we visualize internal

structures using alpha blending in addition to rendering cross-sections.

for example. This is simply done by tagging the respective side of the DSs representing

those regions as invisible and hiding them when rendering cross-sections.

Figures 6.21, 6.22, and 6.23 show scenes consisting of many cut pieces of objects

displayed using NPR. In such scenes, our algorithm for synthesizing random variations

of models proved very effective. All objects contain global distinct structures, spatially-

varying materials, and smooth color transitions, which would be difficult to handle with

97

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

(a) (b) (c)

Figure 6.20: Increasing the expressivity of plain color rendering (a) by applying simple

NPR techniques: artistic silhouette [71] (b) and Perlin noise [81] (c).

Figure 6.21: A scene of assorted fruits displayed using NPR.

previous methods [21, 74]. Also note that most examples (e.g., tomatoes, strawberries,

star fruits, and more) make use of open surfaces, which cannot be represented by

isosurfaces of signed distance fields [111]. We emphasize that the DSs representation

is rather general and can be used to model a variety of volumetric objects. For instance,

we have successfully created a geological model (Figure 6.24); our user interface was

instrumental in designing the different layers and veins in this case, since they generally

follow symmetry around the main lava axis. The kidney model (Figure 6.25) is another

98

6.4. Results

Figure 6.22: A tomato salad.

example of a natural object whose inner structure is modeled with DSs (its shape was

modeled manually).

Our prototype system is implemented using C++, OpenGL and GLSL on a laptop

with a 2.6 GHz CPU, 3.0 GB of RAM, and an NVIDIA Quadro FX 570M GPU. Table

6.1 shows our result statistics, indicating the efficiency of the DSs representation in

terms of both storage and computation, as well as the usefulness of our user interface

for creating DSs, which leads to fairly low design times. All results were designed by

the authors, and the design times typically took several minutes. Some of the more

complex models were created through a lot of experimentation; the creative exploration

took several hours in those cases. Most of the modeling processes required much trial

and error, and our simple sketching interface was effective for this purpose. A formal

user study is a subject for future work.

99

Chapter 6. Vector-Based Method for Representing Smooth Color Transitions using

Colored 3D Surfaces

Figure 6.23: A vegetable salad.

Figure 6.24: A DSs volcano model created with our interface.

6.5 Limitations

The main current shortcoming of DSs is the lack of information about texture details.

Combining DSs with texture synthesis, in which smooth color distributions defined

by DSs guide the synthesis of spatially-varying textures, is an interesting future direc-

tion. Additionally, we currently ignore translucency which plays an essential role in

photorealistic rendering of volumetric objects. Translucency could be introduced by

100

6.5. Limitations

Figure 6.25: A kidney model represented as DSs.

Title Type

Design

(min)
Cut
(sec) Vtx # Face #

Size
(KB)

Tomato N-fold 25 6.1 10619 20412 669

Onion Cylndr 10 1.9 4184 8110 264

Persimmon N-fold 16 8.1 9162 18208 584

Pepper N-fold 20 6.8 9317 18328 592

Avocado Cylndr 8 0.8 2699 5341 172

Apple N-fold 25 3.3 4074 7685 255

Okra N-fold 17 3.7 9400 18480 597

Star fruit N-fold 15 3.2 6357 12190 400

Strawberry Cylndr 141 7.7 18158 32049 1110

Cucumber N-fold 184 7.9 14984 28592 942

Kiwi N-fold 162 27.7 21438 38688 1321

Volcano Cylndr 187 10.9 11057 20673 690

Kidney – 362 3.9 2939 5694 185

Table 6.1: Result statistics. We report the type of rotational symmetry in column

2; Design refers to the total design time including sketching and painting; Cut is the

typical time for cross-sectioning; Size is the total data size of the DSs model.

assigning translucent material information to DSs in addition to colors, but realistic

rendering of such highly translucent and heterogeneous materials is still a challenge.

101

Chapter 7

Conclusion

In this chapter, we conclude this thesis by first summarizing our contributions, then

discussing the limitation of our methods, and finally depicting future directions for

further investigation.

7.1 Summary of Contributions

The goal of this thesis is to allow the user to interactively and efficiently create volumet-

ric models of natural objects that have complex internal structures using compact and

consistent representations. We identified two inherent difficulties in volumetric model-

ing. The first difficulty is that the user cannot specify volumetric information directly,

since volumetric information cannot be perceived directly by humans. The second

difficulty is that the computational cost increases much more rapidly in volumetric

modeling than in surface modeling. To deal with these difficulties, we proposed two

general principles for volumetric modeling. The first principle is to let the user specify

some attribute values such as color and orientation on some surfaces that are charac-

teristic to the object’s internal structures, which we refer to as characterizing surfaces,

and then propagate such values specified on the characterizing surfaces through the

volume (Principle I). The second principle is to exploit the regularities of the object’s

internal structures to achieve compact representations and fast algorithms (Principle

II). In order to comprehensively discuss regularities of objects’ internal structures, we

classified solid textures into different types based on the scale and anisotropy of the

structures represented by solid textures. We further realized that raster-based and

vector-based representations are better suited for modeling smaller and larger scale

structures, respectively, corresponding to different types of solid textures in our clas-

sification. Based on this analysis, we proposed two methods for volumetric modeling,

102

7.2. Limitations

one in the raster-based approach and the other in the vector-based approach, both of

which make use of our two principles for volumetric modeling.

For the raster-based approach, we proposed a method to represent detailed internal

structures of objects using anisotropic solid textures. The basic idea is to repeatedly

paste patches of an input anisotropic solid texture to a model’s interior according to a

user-specified volumetric orientation field, filling the model with the solid texture. We

proposed two sketch-based user interfaces that allow the user to quickly create volu-

metric orientation fields inside the model. Our user interfaces for modeling volumetric

orientation fields are based on Principle I in that either the model’s exterior surface or

the model’s depth layers are regarded as characterizing surfaces, and the user draws

strokes on these surfaces to specify desired orientations which are then propagated

through the volume. Principle II is also utilized in our raster-based method in that

we regard the repetition of the same detailed structures as the structural regularity,

which allows us to reuse the same texture data leading to a compact representation,

and to use a patch-based texture synthesis algorithm which is generally much faster

than voxel-based texture synthesis algorithms.

For the vector-based approach, we proposed a method to represent a smooth vol-

umetric color distribution using a set of colored 3D surfaces. The smooth volumetric

color distribution is obtained by diffusing colors from the surfaces over the volume.

This method utilizes Principle I in that the boundaries of sharp color transitions in

the volume are regarded as characterizing surfaces, and user-specified colors on the

characterizing surfaces are propagated through the volume to define a smooth volu-

metric color distribution. Principle II is also utilized in our vector-based method in

that we regard the smoothness of the volumetric color distribution as the structural

regularity, which allows us to efficiently compute the diffusion of colors only locally

on cross-sectional points. This further allows us to represent a volumetric model

compactly as a set of colored 3D surfaces without storing the entire volumetric color

distribution.

We demonstrated that it is possible to quickly and easily create a number of volu-

metric models of various natural objects that have complex internal structures using

our methods, suggesting the effectiveness of our two principles.

7.2 Limitations

While we have so far only demonstrated cases where our methods are successful, in

this section we discuss cases where our methods are inadequate. Most of natural

103

Chapter 7. Conclusion

Figure 7.1: Examples of natural objects that are difficult to model using our methods.

objects modeled using our methods have rotationally symmetric internal structures

(e.g., kiwi fruits, carrots, trees, tomatoes, strawberries, etc.) with a few exceptions

(e.g., strata, roll cakes, and kidney), although both of our raster-based and vector-

based representations per se do not assume rotationally symmetric internal structures.

On the contrary, volumetric modeling of objects with internal structures that are

not rotationally symmetric (e.g., meat, fish, brain, tooth, etc., see Figure 7.1) using

our methods proved to be either impossible or very time-consuming. We discuss the

reasons below.

In the case of our raster-based method presented in Chapter 5, the system repeat-

edly pastes patches of a solid texture with variation level 0 or 1 to a model’s interior.

It turned out that textures with variation level 0 (i.e., homogeneous textures) are most

of the time only useful for creating artificial models such as those shown in Figures

5.2, 5.3, and 5.4. To create more interesting models of natural objects, textures with

variation level 1 (i.e., layered textures) are always used. Such layered textures can

represent either planar layered structures (e.g., strata, roll cakes) or rotationally sym-

metric layered structures (e.g., kiwi fruits, carrots, trees, etc.). Note that the modeling

user interface and the synthesis algorithm are identical for both types of structures

and are unaware of rotational symmetry. It is, unfortunately, impossible to create

models with more complex internal structures than such layered structures using this

method.

In the case of our vector-based method presented in Chapter 6, the representation

itself is general since a model simply consists of a set of colored 3D surfaces. It is

therefore possible in theory to create models representing arbitrary kind of objects

by placing an arbitrary number of colored 3D surfaces at arbitrary 3D locations using

standard 3D modeling packages such as Autodesk Maya. Such a time-consuming mod-

eling process is, however, undesirable for our purpose of achieving efficient volumetric

modeling. Modeling 3D object’s internal structures efficiently is still a challenging

problem for which only a few methods have been explored [75]. In order to enable

104

7.3. Future Directions

quick and easy volumetric modeling of natural objects, we proposed our sketch-based

3D modeling interface that assumes rotational symmetry in the object’s internal struc-

tures, based on our observation that many natural objects actually have rotationally

symmetric internal structures.

In short, most natural objects modeled successfully using our methods have rota-

tionally symmetric internal structures. Volumetric modeling of objects that have more

complex internal structures than rotationally symmetric ones would be either impos-

sible using our raster-based method, or very time-consuming using our vector-based

method. In fact, the kidney model shown in Figure 6.25, which does not have rota-

tionally symmetric internal structures and therefore was modeled using standard 3D

modeling techniques, took much longer time to create than others, despite its relatively

fewer number of surfaces. It is subject of our future work to achieve efficient volumet-

ric modeling of objects that have more complex internal structures than rotationally

symmetric ones.

7.3 Future Directions

There are a number of interesting and exciting future directions that lie beyond this

thesis as described below, in addition to the one mentioned in the previous section.

We believe the field of volumetric modeling will receive even more attention in the

future.

7.3.1 Combining Raster-Based and Vector-Based Approaches

As described earlier, our raster-based and vector-based methods are suited for repre-

senting detailed and global structures, respectively, and thus are complementary to

each other. It would be desirable if we could combine these two approaches to enable

a hybrid approach.

One possible idea is to incorporate detailed structures represented by our raster-

based method into global structures represented by our vector-based method. Since

internal textures of many natural objects vary spatially (e.g., a tomato has very differ-

ent textures at its fleshy part and the part close to its stem end), it would be necessary

to extend our raster-based approach to using continuously morphable textures instead

of using the same texture as in the original, such that the transitions of the synthesized

textures will follow the smooth volumetric field defined by our vector-based method.

For interpolating textures, Matusik et al.’s technique to define a continuous space of

morphable textures [64] could be utilized. An interesting question then would be how

105

Chapter 7. Conclusion

to define an appropriate space of morphable textures suited for our purpose of vol-

umetric modeling. Another important question is how to integrate our raster-based

method into our vector-based method while ensuring the compactness achieved by not

storing a tetrahedral mesh in our vector-based method.

7.3.2 Use of Scanned Volume Data

This thesis focused on creating volumetric models from scratch, rather than from

volume data obtained using scanning methods such as CT or MRI. This is because

such volume data are currently not yet very abundant, and it seems more desirable for

artists to be able to create volumetric models without relying on expensive scanning

facilities. In the future, however, it is likely that such scanning facilities become

less expensive and more common, and thus volumetric modeling techniques based on

scanned volume data will be needed.

Recently, Wang et al. [110] used segmented volume data of human brain to extract

information about geometry for multi-scale volumetric modeling. We could use the

same approach for our vector-based method. However, information about color cannot

be obtained from CT or MRI volume data, as each voxel has only a scalar intensity

value. In Wang et al.’s approach [110], material properties for each segmented region

is manually specified by the user. It is very challenging to automatically obtain in-

formation about color from CT or MRI volume data. We believe it is necessary to

combine such volume data with other data sources such as photographs to estimate

information about color.

Note that there is another approach to scanning volumes by directly slicing ob-

jects and taking their photographs sequentially, resulting in volume data with colors.

Because of its invasive nature, this approach is currently used almost exclusively for

scientific research purposes such as biology, making it less popular compared to CT

and MRI. It has several limitations such as low resolution along the depth direction,

the fixation process (e.g., freezing) that might affect the structure and appearance of

objects, and destruction of objects’ tiny structures during the cutting process. If these

limitations are alleviated in the future, this approach will be viable for volumetric

modeling in the context of computer graphics.

7.3.3 Physically-Based Volume Rendering

In the field of physically-based volume rendering, the main challenge nowadays is

how to create volumetric models to render. Recently Zhao et al. [121] presented a

106

7.3. Future Directions

method to utilize very high-resolution volume data of pieces of fabric obtained by

micro CT scanning to achieve extremely realistic physically-based volume rendering

of thick cloths. As mentioned above, CT volume contain only scalar intensity values,

and cannot be used directly for physically-based rendering. In order to deal with this

issue, after some preprocessing that reduces noise and extracts local fiber orientation,

they estimate material parameters for fabrics (i.e., albedo and standard deviation of

flake distribution) by solving a radically simplified inverse rendering problem.

One limitation of their approach is that most of the parameters (other than the

fiber density and orientation) are assumed to be globally constant, which means that

the fabric consists of the same kind of tiny fibers distributed with varying density

and orientation. This assumption does not hold true for other types of fabrics (or

natural objects in general) that contain various materials with different optical pa-

rameters. The problem of how to construct heterogeneous volumetric models suited

for physically-based volume rendering remains a challenge.

7.3.4 Biologically-Motivated Procedural Modeling

In Chapter 6, we presented a simple sketch-based user interface for modeling internal

structures of natural objects such as fruits and vegetables. This approach, however, did

not allow us to easily create realistic geometries of natural objects containing complex

and intricate internal structures, and required time-consuming trial-and-error artistic

experiments.

An interesting approach to this problem would be to use biologically-motivated

computational models such as L-systems [86] which has been successfully used for

modeling trees [78] and other kinds of organic structures such as Purkinje fibers [41].

To our knowledge, there is no previous work that applies the same approach to vol-

umetric modeling, which seems an interesting area for future research. In particular,

it would be interesting from the scientific perspective as well if we could simulate the

growth processes of volumetric internal structures of natural objects.

7.3.5 Techniques for Interacting with Volumetric Models

In this thesis we have focused on creating volumetric models while letting the user

browse them by simply cutting. We believe, however, that techniques for interacting

with volumetric models are also equally important for providing the user with more

rich and intuitive experiences. Examples of such interaction techniques include more

sophisticated cutting [73, 65, 13], physically accurate deformations accounting for ma-

107

Chapter 7. Conclusion

terial heterogeneity [28], and cooking simulation that handles change of appearances

due to heating [52]. Note that consistent volumetric information created using our

approaches is essential for realizing these applications. Although several works exist

as above, the area of interaction techniques for volumetric models has not yet been

fully explored, and we believe it deserves further research.

108

References

[1] Takashi Ashihara, Tsunetoyo Namba, Takanori Ikeda, Makoto Ito, Masahiko Ki-

noshita, and Kazuo Nakazawa. Breakthrough waves during ventricular fibrilla-

tion depend on the degree of rotational anisotropy and the boundary conditions:

A simulation study. Journal of Cardiovascular Electrophysiology, 12(3):312–322,

2001. 51

[2] Takashi Ashihara, Tsunetoyo Namba, Takenori Yao, Tomoya Ozawa, Ayaka

Kawase, Takenori Ikeda, Kazuo Nakazawa, and Makoto Ito. Vortex cordis as

a mechanism of postshock activation: Arrhythmia induction study using a bido-

main model. Journal of Cardiovascular Electrophysiology, 14(3):295–302, 2003.

51

[3] Hedlena Bezerra, Elmar Eisemann, Doug DeCarlo, and Joëlle Thollot. Diffusion

constraints for vector graphics. In Proceedings of the 8th International Sympo-

sium on Non-Photorealistic Animation and Rendering, pages 35–42, 2010. 83

[4] Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Wojciech Matusik, Hanspeter

Pfister, and Markus Gross. Capture and modeling of non-linear heterogeneous

soft tissue. ACM Trans. Graph., 28(3):89:1–89:9, 2009. 2

[5] Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3D

faces. In Proc. SIGGRAPH 99, pages 187–194, 1999. 96

[6] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangula-

tion. ACM Trans. Graph., 28(3):77:1–77:10, 2009. 39

[7] John C. Bowers, Jonathan Leahey, and Rui Wang. A ray tracing approach to

diffusion curves. Computer Graphics Forum, 30(4):1345–1352, 2011. 83

[8] S. Bruckner and M. E. Groller. Style transfer functions for illustrative volume

rendering. Computer Graphics Forum, 26(3):715–724, 2007. 35, 36

109

References

[9] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell., 8(6):679–698, 1986. 90

[10] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Müller, and Eugene Zhang.

Interactive procedural street modeling. ACM Trans. Graph., 27(3):103:1–103:10,

2008. 39

[11] Yanyun Chen, Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-

Yeung Shum. Shell texture functions. ACM Trans. Graph., 23(3):343–353, 2004.

34, 35

[12] D. Cline, S. Jeschke, K. White, A. Razdan, and P. Wonka. Dart throwing on

surfaces. Computer Graphics Forum, 28(4):1217–1226, 2009. 93

[13] Carlos Correa, Deborah Silver, and Min Chen. Feature aligned volume manip-

ulation for illustration and visualization. IEEE Transactions on Visualization

and Computer Graphics, 12(5):1069–1076, 2006. 35, 36, 107

[14] Keenan Crane, Mathieu Desbrun, and Peter Schroder. Trivial connections on

discrete surfaces. Computer Graphics Forum, 29(5):1525–1533, 2010. 39

[15] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert

Jagnow. A procedural approach to authoring solid models. ACM Trans. Graph.,

21(3):302–311, 2002. 15, 29, 31

[16] Timothy A. Davis. A column pre-ordering strategy for the unsymmetric-pattern

multifrontal method. ACM Trans. Math. Softw., 30(2):165–195, 2004. 43

[17] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and syn-

thesis of texture images. In Proc. SIGGRAPH 97, pages 361–368, 1997. 96

[18] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. Implicit fair-

ing of irregular meshes using diffusion and curvature flow. In Proc. SIGGRAPH

99, pages 317–324, 1999. 43

[19] J.M. Dischler and D. Ghazanfarpour. A survey of 3d texturing. Computers &

Graphics, 25(1):135–151, 2001. 23

[20] J.M. Dischler, D. Ghazanfarpour, and R. Freydier. Anisotropic solid texture

synthesis using orthogonal 2d views. Computer Graphics Forum, 17(3):87–95,

1998. 23, 120

110

References

[21] Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. Lazy solid texture

synthesis. Computer Graphics Forum, 27(4):1165–1174, 2008. 26, 29, 41, 98, 120

[22] Craig Donner and Henrik Wann Jensen. Light diffusion in multi-layered translu-

cent materials. ACM Trans. Graph., 24(3):1032–1039, 2005. 35

[23] Craig Donner, Tim Weyrich, Eugene d’Eon, Ravi Ramamoorthi, and Szymon

Rusinkiewicz. A layered, heterogeneous reflectance model for acquiring and

rendering human skin. ACM Trans. Graph., 27(5):140:1–140:12, 2008. 35

[24] Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and

Hans Køhling Pedersen. Modeling and rendering of weathered stone. In Proc.

SIGGRAPH 99, pages 225–234, 1999. 34, 35

[25] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and Steve

Worley. Texturing and Modeling: A Procedural Approach. Morgan Kaufmann,

3 edition, 2002. 17

[26] James H. Elder. Are edges incomplete? International Journal of Computer

Vision, 34(2/3):97–122, 1999. 80

[27] Zeev Farbman, Gil Hoffer, Yaron Lipman, Daniel Cohen-Or, and Dani Lischinski.

Coordinates for instant image cloning. ACM Trans. Graph., 28(3):67:1–67:9,

2009. 85

[28] François Faure, Benjamin Gilles, Guillaume Bousquet, and Dinesh K. Pai. Sparse

meshless models of complex deformable solids. ACM Trans. Graph., 30(4):73:1–

73:10, 2011. 108

[29] James Ferguson. Multivariable curve interpolation. J. ACM, 11(2):221–228,

1964. 79

[30] Mark Finch, John Snyder, and Hugues Hoppe. Freeform vector graphics with

controlled thin-plate splines. ACM Trans. Graph., 30(6):166:1–166:10, 2011. 83

[31] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. Design

of tangent vector fields. ACM Trans. Graph., 26(3):56:1–56:56:9, 2007. 39

[32] Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des.,

20(1):19–27, 2003. 85

111

References

[33] Hongbo Fu, Yichen Wei, Chiew-Lan Tai, and Long Quan. Sketching hairstyles.

In Proceedings of the 4th Eurographics workshop on Sketch-based interfaces and

modeling, pages 31–36, 2007. 39, 40

[34] D. Ghazanfarpour and J.M. Dischler. Spectral analysis for automatic 3-d texture

generation. Computers & Graphics, 19(3):413–422, 1995. 22, 23, 24

[35] D. Ghazanfarpour and J.M. Dischler. Generation of 3d texture using multiple

2d models analysis. Computer Graphics Forum, 15(3):311–323, 1996. 23, 120

[36] R. Haraguchi, T. Igarashi, S. Owada, T. Yao, T. Namba, T. Ashihara, T. Ikeda,

and K. Nakazawa. Electrophysiological heart simulator equipped with sketchy

3-d modeling. In Complex Medical Engineering, 2005. 51

[37] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthe-

sis. In Proc. SIGGRAPH 95, SIGGRAPH ’95, pages 229–238, New York, NY,

USA, 1995. ACM. 21, 23, 24, 26

[38] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. In Proc. SIG-

GRAPH 2000, SIGGRAPH ’00, pages 517–526, New York, NY, USA, 2000.

ACM Press/Addison-Wesley Publishing Co. 38, 39

[39] Jin Huang, Yiying Tong, HongyuWei, and Hujun Bao. Boundary aligned smooth

3d cross-frame field. ACM Trans. Graph., 30(6):143:1–143:8, 2011. 41, 42

[40] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-possible

shape manipulation. ACM Trans. Graph., 24(3):1134–1141, 2005. 91

[41] Takashi Ijiri, Takashi Ashihara, Takeshi Yamaguchi, Kenshi Takayama, Takeo

Igarashi, Tatsuo Shimada, Tsunetoyo Namba, Ryo Haraguchi, and Kazuo

Nakazawa. A procedural method for modeling the purkinje fibers of the heart.

The Journal of Physiological Sciences, 58(7):481–486, 2008. 107

[42] Takashi Ijiri, Kenshi Takayama, Hideo Yokota, and Takeo Igarashi. Procdef:

Local-to-global deformation for skeleton-free character animation. Computer

Graphics Forum, 28(7):1821–1828, 2009. 6, 53, 55

[43] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological techniques for

solid textures. ACM Trans. Graph., 23(3):329–335, 2004. 23

112

References

[44] Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve

Marschner. A radiative transfer framework for rendering materials with

anisotropic structure. ACM Trans. Graph., 29(4):53:1–53:13, 2010. 35

[45] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A

practical model for subsurface light transport. In Proc. SIGGRAPH 2001, pages

511–518, 2001. 35

[46] S. Jeschke, D. Cline, and P. Wonka. Estimating color and texture parameters

for vector graphics. Computer Graphics Forum, 30(2):523–532, 2011. 83

[47] Stefan Jeschke, David Cline, and Peter Wonka. A gpu laplacian solver for diffu-

sion curves and poisson image editing. ACM Trans. Graph., 28(5):116:1–116:8,

2009. 82, 83

[48] Stefan Jeschke, David Cline, and Peter Wonka. Rendering surface details with

diffusion curves. ACM Trans. Graph., 28(5):117:1–117:8, 2009. 83

[49] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures.

SIGGRAPH Comput. Graph., 23(3):271–280, 1989. 34, 35

[50] James T. Kajiya and Brian P Von Herzen. Ray tracing volume densities. SIG-

GRAPH Comput. Graph., 18(3):165–174, 1984. 34, 35

[51] Michael Kass, AndrewWitkin, and Demetri Terzopoulos. Snakes: Active contour

models. International Journal of Computer Vision, 1(4):321–331, 1988. 74, 91

[52] Fumihiro Kato, Mina Shiina, Takashi Tokizaki, Hironori Mitake, Takafumi Aoki,

and Shoichi Hasegawa. Culinary art designer. In Proceedings of the 2008 Inter-

national Conference on Advances in Computer Entertainment Technology, pages

398–398, 2008. 108

[53] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski,

and Tien-Tsin Wong. Solid texture synthesis from 2d exemplars. ACM Trans.

Graph., 26(3):2:1–2:9, 2007. 25, 26, 120

[54] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture optimiza-

tion for example-based synthesis. ACM Trans. Graph., 24(3):795–802, 2005.

26

113

References

[55] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D.S. Ebert, J.P. Lewis,

K. Perlin, and M. Zwicker. A survey of procedural noise functions. Computer

Graphics Forum, 29(8):2579–2600, 2010. 17

[56] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip Dutré. Procedural

noise using sparse gabor convolution. ACM Trans. Graph., 28(3):54:1–54:10,

2009. 17, 83

[57] Yu-Kun Lai, Shi-Min Hu, and Ralph R. Martin. Automatic and topology-

preserving gradient mesh generation for image vectorization. ACM Trans.

Graph., 28(3):85:1–85:8, 2009. 80, 81

[58] Seungkyu Lee, R.T. Collins, and Yanxi Liu. Rotation symmetry group detection

via frequency analysis of frieze-expansions. In Proceedings of CVPR 2008, pages

1–8, 2008. 90

[59] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.

ACM Trans. Graph., 24(3):777–786, 2005. 26

[60] Yaron Lipman, Johannes Kopf, Daniel Cohen-Or, and David Levin. GPU-

assisted positive mean value coordinates for mesh deformations. In Proc. Euro-

graphics Symposium on Geometry Processing 2007, pages 117–123, 2007. 78, 84,

85, 87

[61] Yang Liu, Weiwei Xu, Jun Wang, Lifeng Zhu, Baining Guo, Falai Chen, and

Guoping Wang. General planar quadrilateral mesh design using conjugate di-

rection field. ACM Trans. Graph., 30(6):140:1–140:10, 2011. 39

[62] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution

3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163–169,

1987. 65

[63] Aidong Lu, David S. Ebert, Wei Qiao, Martin Kraus, and Benjamin Mora.

Volume illustration using wang cubes. ACM Trans. Graph., 26(2):11:1–11:18,

2007. 35

[64] Wojciech Matusik, Matthias Zwicker, and Frédo Durand. Texture design using a

simplicial complex of morphable textures. ACM Trans. Graph., 24(3):787–794,

2005. 105

[65] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deformations

for browsing volumetric data. In Proc. IEEE VIS’03, page 53, 2003. 35, 107

114

References

[66] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.

Meshless deformations based on shape matching. ACM Trans. Graph.,

24(3):471–478, 2005. 54

[67] K. Nakazawa, T. Suzuki, T. Ashihara, M. Inagaki, T. Namba, T. Ikeda, and

R. Suzuki. Computational analysis and visualization of spiral wave reentry in a

virtual heart model. In T. Yamaguchi, editor, Clinical application of computa-

tional mechanics to the cardiovascular system. Springer, 2000. 51

[68] Andrew Nealen. Interfaces and Algorithms for the Creation, Modification, and

Optimization of Surface Meshes. PhD thesis, Technische Universität Berlin,

October 2007. 42

[69] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fibermesh:

designing freeform surfaces with 3d curves. ACM Trans. Graph., 26(3):41:1–

41:9, 2007. 66

[70] P. M. Nielsen, I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model

of geometry and fibrous structure of the heart. American Journal of Physiology

- Heart and Circulatory Physiology, 260(4):H1365–H1378, 1991. 47

[71] J. D. Northrup and Lee Markosian. Artistic silhouettes: a hybrid approach. In

Proc. NPAR 2000, pages 31–37, 2000. 96, 98

[72] Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle

Thollot, and David Salesin. Diffusion curves: a vector representation for smooth-

shaded images. ACM Trans. Graph., 27(3):92:1–92:8, 2008. 77, 80, 93, 94

[73] Shigeru Owada, Ayumi Akaboya, Frank Nielsen, Fusako Kusunoki, and Takeo

Igarashi. Kiru (“cut”, in japanese). In 12th Workshop on Interactive Systems

and Software (WISS 2004), pages 1–4, 2004. 2, 107

[74] Shigeru Owada, Takahiro Harada, Philipp Holzer, and Takeo Igarashi. Volume

painter: Geometry-guided volume modeling by sketching on the cross-section.

In Proceedings of Eurographics Symposium on Sketcy-Based Interfaces and Mod-

eling, pages 9–16, 2008. 27, 28, 29, 98

[75] Shigeru Owada, Frank Nielsen, Kazuo Nakazawa, and Takeo Igarashi. A sketch-

ing interface for modeling the internal structures of 3d shapes. In Proceedings of

the 3rd international conference on Smart Graphics, pages 49–57, 2003. 104

115

References

[76] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. Volumetric

illustration: designing 3d models with internal textures. ACM Trans. Graph.,

23(3):322–328, 2004. 18, 19, 39, 40, 72

[77] Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on

surfaces. ACM Trans. Graph., 26(3):55:1–55:10, 2007. 39

[78] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam Runions, Brendan Lane,

Radomı́r Měch, and Przemyslaw Prusinkiewicz. Self-organizing tree models for

image synthesis. ACM Trans. Graph., 28(3):58:1–58:10, 2009. 107

[79] Darwyn R. Peachey. Solid texturing of complex surfaces. SIGGRAPH Comput.

Graph., 19(3):279–286, 1985. 16

[80] K. Perlin and E. M. Hoffert. Hypertexture. SIGGRAPH Comput. Graph.,

23(3):253–262, 1989. 34, 35

[81] Ken Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296,

1985. 16, 17, 96, 98, 125

[82] Nico Pietroni, Paolo Cignoni, Miguel Otaduy, and Roberto Scopigno. Solid-

texture synthesis: A survey. IEEE Computer Graphics and Applications,

30(4):74–89, 2010. 16

[83] Nico Pietroni, Miguel A. Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus

Gross. Texturing internal surfaces from a few cross sections. Computer Graphics

Forum, 26(3):637–644, 2007. 19, 20, 72

[84] Pixar. Ratatouille (motion picture), 2007. 2

[85] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Proc.

SIGGRAPH 2000, pages 465–470, 2000. 38, 59, 60, 65, 66, 69, 74

[86] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty

of Plants (Virtual Laboratory). Springer-Verlag Berlin and Heidelberg GmbH &

Co. K, 1990. 107

[87] Xuejie Qin and Yee-Hong Yang. Aura 3d textures. IEEE Transactions on

Visualization and Computer Graphics, 13(2):379–389, 2007. 26, 120

[88] Nicolas Ray, Bruno Vallet, Laurent Alonso, and Bruno Levy. Geometry-aware

direction field processing. ACM Trans. Graph., 29(1):1:1–1:11, 2009. 39

116

References

[89] Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. N-symmetry direction

field design. ACM Trans. Graph., 27(2):10:1–10:13, 2008. 39

[90] T. Ritschel, T. Engelhardt, T. Grosch, H.-P. Seidel, J. Kautz, and C. Dachs-

bacher. Micro-rendering for scalable, parallel final gathering. ACM Trans.

Graph., 28(5):132:1–132:8, 2009. 87

[91] Alec R. Rivers and Doug L. James. Fastlsm: fast lattice shape matching for

robust real-time deformation. ACM Trans. Graph., 26(3):82:1–82:6, 2007. 54

[92] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin.

Orientable textures for image-based pen-and-ink illustration. In Proc. SIG-

GRAPH 97, pages 401–406, 1997. 38, 39

[93] Jonathan Richard Shewchuk. Delaunay refinement algorithms for triangular

mesh generation. Computational Geometry, 22(1–3):21–74, 2002. 86

[94] Hang Si. On refinement of constrained delaunay tetrahedralizations. In Proc. of

the 15th International Meshing Roundtable, pages 509–528, 2006. 47, 87

[95] Cyril Soler, Marie-Paule Cani, and Alexis Angelidis. Hierarchical pattern map-

ping. ACM Trans. Graph., 21(3):673–680, 2002. 74

[96] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P. Seidel.

Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, pages 175–184, 2004. 42

[97] Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. Image vectorization

using optimized gradient meshes. ACM Trans. Graph., 26(3):11:1–11:7, 2007.

79, 80, 81

[98] Kenshi Takayama, Takashi Ashihara, Takashi Ijiri, Takeo Igarashi, Ryo

Haraguchi, and Kazuo Nakazawa. A sketch-based interface for modeling my-

ocardial fiber orientation that considers the layered structure of the ventricles.

The Journal of Physiological Sciences, 58(7):487–492, 2008. 6

[99] Kenshi Takayama and Takeo Igarashi. Layered solid texture synthesis from a

single 2d exemplar. In ACM SIGGRAPH 2009 posters, 2009. 7

[100] Kenshi Takayama, Takeo Igarashi, Ryo Haraguchi, and Kazuo Nakazawa. A

sketch-based interface for modeling myocardial fiber orientation. In Proceed-

ings of the 8th international symposium on Smart Graphics, pages 1–9, Berlin,

Heidelberg, 2007. Springer-Verlag. 6

117

References

[101] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. Lapped

solid textures: Filling a model with anisotropic textures. ACM Trans. Graph.,

27(3):53:1–53:9, 2008. 6

[102] Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy

Boubekeur, and Olga Sorkine. Geobrush: Interactive mesh geometry cloning.

Computer Graphics Forum, 30(2):613–622, 2011.

[103] Kenshi Takayama, Olga Sorkine, Andrew Nealen, and Takeo Igarashi. Volumet-

ric modeling with diffusion surfaces. ACM Trans. Graph., 29(6):180:1–180:8,

2010. 6

[104] Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-Yeung Shum.

Modeling and rendering of quasi-homogeneous materials. ACM Trans. Graph.,

24(3):1054–1061, 2005. 34, 35

[105] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra:

improved iso-surface extraction. Computers & Graphics, 23(4):583–598, 1999.

50, 65

[106] Greg Turk. Texture synthesis on surfaces. In Proc. SIGGRAPH 2001, pages

347–354, 2001. 18, 38, 39

[107] Greg Turk and James F. O’Brien. Shape transformation using variational im-

plicit functions. In Proc. SIGGRAPH 99, pages 335–342, 1999. 42, 50, 65

[108] Nobuyuki Umetani, Kenshi Takayama, Jun Mitani, and Takeo Igarashi. A re-

sponsive finite element method to aid interactive geometric modeling. IEEE

Computer Graphics and Applications, 31(5):43–53, 2011.

[109] Jiaping Wang, Shuang Zhao, Xin Tong, Stephen Lin, Zhouchen Lin, Yue Dong,

Baining Guo, and Heung-Yeung Shum. Modeling and rendering of heteroge-

neous translucent materials using the diffusion equation. ACM Trans. Graph.,

27(1):9:1–9:18, 2008. 35

[110] Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. Multiscale vector volumes.

ACM Trans. Graph., 30(6):167:1–167:8, 2011. 15, 32, 34, 84, 106

[111] Lvdi Wang, Kun Zhou, Yizhou Yu, and Baining Guo. Vector solid textures.

ACM Trans. Graph., 29(4):86:1–86:8, 2010. 15, 31, 84, 98

118

References

[112] Li-Yi Wei. Texture synthesis from multiple sources. In ACM SIGGRAPH 2003

Sketches, 2003. 25, 120

[113] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the art in

example-based texture synthesis. In Eurographics ’09 State of the Art Reports

(STARs). Eurographics, 2009. 21

[114] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured vector

quantization. In Proc. SIGGRAPH 2000, pages 479–488, 2000. 18

[115] H. Winnemoller, A. Orzan, L. Boissieux, and J. Thollot. Texture design and

draping in 2d images. Computer Graphics Forum, 28(4):1091–1099, 2009. 83

[116] Steven Worley. A cellular texture basis function. In Proc. SIGGRAPH 96, pages

291–294, 1996. 17

[117] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and

Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipula-

tion. ACM Trans. Graph., 23(3):644–651, 2004. 42

[118] E. Zhang, J. Hays, and G. Turk. Interactive tensor field design and visualiza-

tion on surfaces. IEEE Transactions on Visualization and Computer Graphics,

13(1):94–107, 2007. 39

[119] Guo-Xin Zhang, Song-Pei Du, Yu-Kun Lai, Tianyun Ni, and Shi-Min Hu. Sketch

guided solid texturing. Graphical Models, 73(3):59–73, 2011. 40, 41

[120] Guo-Xin Zhang, Yu-Kun Lai, and Shi-Min Hu. Efficient synthesis of gradient

solid textures. Technical report, Tsinghua University, 2011. 84

[121] Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. Building volu-

metric appearance models of fabric using micro ct imaging. ACM Trans. Graph.,

30(4):44:1–44:10, 2011. 35, 106

119

Appendix A

Methods for Creating Solid Texture

Exemplars

In this appendix, we describe methods for creating solid texture exemplars that can

be used by our raster-based volumetric modeling method presented in Chapter 5.

We describe three different methods below: synthesis of homogeneous solid textures,

synthesis of layered solid textures, and manual creation of solid textures.

A.1 Synthesis of Homogeneous Solid Textures

Homogeneous solid textures (i.e., texture types 0-A, 0-B, and 0-C) can be created using

one of the existing solid texture synthesis algorithms [35, 20, 112, 87, 53, 21], many of

which allow the user to specify different exemplar texture images for different directions

of cross-sections perpendicular to the x, y, and z coordinate axes. If we assign a single

exemplar texture image to all of the three coordinate axes, the resulting texture will

be of type 0-A (Figure A.1 left). If we assign an exemplar texture image to the x axis

and another different exemplar texture image to the other y and z axes, the resulting

texture will be of type 0-B (Figure A.1 middle). If we assign three different exemplar

texture images to the three coordinate axes, the resulting texture will be of type 0-C

(Figure A.1 right).

A.2 Synthesis of Layered Solid Textures

Synthesis of layered solid textures has not been addressed previously. Here we present

an algorithm for synthesizing layered solid textures from 2D texture exemplars (Figure

A.2) by extending existing non-parametric solid texture synthesis algorithms [53, 21].

120

A.2. Synthesis of Layered Solid Textures

Figure A.1: Synthesis of homogeneous solid textures corresponding to texture types

0-A (left), 0-B (middle), and 0-C(right).

?

(= depth direction)

Figure A.2: The definition of a problem of synthesizing layered solid textures from 2D

texture exemplars parallel to the depth direction.

121

Appendix A. Methods for Creating Solid Texture Exemplars

Figure A.3: Synthesis of layered solid textures by considering an additional layer depth

map channel (left), similar to previous methods of using an additional feature map

channel to preserve structures (right).

Our basic idea is to consider the layer depth in the exemplar texture as an addi-

tional channel (Figure A.3 left), much like feature maps are used to preserve distinct

structures in the previous works (Figure A.3 right). Note that, since we do not have

any 2D exemplars orthogonal to the depth direction, we perform the neighborhood

matching and the texture optimization only in the other two directions. We also mod-

ify the process of initializing the synthesis volume at the coarsest level; instead of

initializing each voxel with a pixel sampled from the exemplar in a totally random

manner, we initialize each voxel with a pixel randomly sampled from the 2D exemplar

which has the same layer depth value (Figure A.4b).

This simple extension is sufficient for the synthesis of textures of type 1-B where

we have two different 2D texture exemplars of two orthogonal cross-sections. For

the synthesis of textures of type 1-A, however, this simple extension leads to a severe

sweeping artifact as shown in Figure A.5. The reason of this problem is that the above

extension accepts a simple sweep of the single 2D exemplar in a direction orthogonal

to the depth direction and oblique to both of the other two directions, as an optimized

synthesis result. In other words, for each voxel, the two neighborhoods of the current

synthesis volume in each of the two directions are very likely to best match with the

same neighborhood of the 2D exemplar (Figure A.6).

We solve this problem using the following simple scheme. In the neighborhood

122

A.2. Synthesis of Layered Solid Textures

(a) (b)

Figure A.4: Additional control map channel encoding layer depth information fed to

the synthesis algorithm. (a) A layer depth control map augmented to the 2D exemplar.

(b) The depth-aware initialization of the synthesis volume at the coarsest level.

Figure A.5: A problem of severe sweeping artifact appears with our naive extension

of only using additional depth map channel.

search phase, for each voxel, we collect the two best matching neighborhoods in each

of the two directions (Figure A.7(middle)). If the first best matching neighborhoods

in both of the two directions point to the same location in the exemplar, we select one

of the two based on the matched distance and assign that pixel as the best matching

neighborhood for the selected direction. The neighborhood for the other direction is

chosen to the second best matching neighborhood (Figure A.7(right)).

Depth
direction

Depth
direction

Figure A.6: The cause of the sweeping artifact. Neighborhoods of the synthesis volume

in the two directions tend to match the same neighborhood in the 2D exemplar.

123

Appendix A. Methods for Creating Solid Texture Exemplars

0.8

1.5 1.2
1.8

Select

Search

Search

0.8
1.8

Figure A.7: A modified version of the neighborhood matching process to deal with the

sweeping artifact. (middle) We collect the two best matching neighborhoods for each

of the two directions. Numbers displayed near the neighborhood rectangles represent

matching distances. (right) A simple selection is performed to avoid the matched

neighborhoods in the two directions pointing to the identical location in the 2D exem-

plar.

Figure A.8: The effect of our simple scheme removing the severe sweeping artifact

seen in Figure A.5. Notice how the appearances on the cross-sections orthogonal to

the depth direction are well synthesized solely from a 2D exemplar parallel to the

depth direction.

Comparison: Figure A.8 shows that this simple scheme works well to remove the

severe sweeping artifact seen in Figure A.5.

Figure A.9 left shows two examples of volumetric models created using the syn-

thesized layered solid textures for our raster-based method presented in Chapter 5.

We demonstrate the benefit of our texture synthesis algorithm by comparing it with

a naive approach of using solid textures created by sweeping 2D images in the two

orthogonal directions, shown in Figure A.9 right.

124

A.3. Manual Creation of Solid Textures

Figure A.9: (left) Models filled with layered solid textures created using our algorithm.

(right) Artifacts appearing on some cross-sections when using layered solid textures

created näıvely by sweeping 2D images.

A.3 Manual Creation of Solid Textures

In practice, it is also possible to create plausible solid textures without relying on solid

texture synthesis techniques by, for example, simply sweeping a 2D image, adding

some noise [81], and manually placing a few colored particles representing distinct

elements (Figure A.10). It is unrealistic to manually create an entire volume of a large

solid object, but since our raster-based method only requires small exemplars, manual

creation is a viable option.

125

Appendix A. Methods for Creating Solid Texture Exemplars

Cross-sectional image

Sweep

Add noise

Skin image

Add

Carrot texture

Remove
seeds

Cropped from
a photo

3D model
of a seed

Paste seeds
one-by-one…

Add noise &
skin layer

Sweep

Figure A.10: Manual creation of solid texture exemplars for carrots (top) and kiwi

fruits (bottom).

126

	Introduction
	Thesis Overview
	Publications

	Analysis of Volumetric Modeling
	Fundamental Difficulties in Volumetric Modeling
	Principles for Effective Volumetric Modeling
	Principle I: Propagating User-Specified Information on the Surfaces Through the Volume
	Principle II: Exploiting Structural Regularities to Achieve Compact Representations and Fast Algorithms

	Classification of Volumetric Fields
	Variation level
	Anisotropy level

	Representations for Volumetric Fields

	Related Work
	Procedural Definition using Mathematical Expressions
	Discussion

	Synthesis of Cross-Sectional Images from Photographs
	2D Texture Synthesis on Cross-Sections
	Morphing of Cross-Sectional Photographs
	Discussion

	Explicit Modeling of Volumetric Field
	Raster-Based Approach
	Vector-Based Approach

	Other Topics Related to Volumetric Modeling
	Realistic Rendering of Translucent Materials
	Volume Visualization

	User Interfaces for Modeling Volumetric Orientation Fields
	Related Work
	Common Machinery: Laplacian Smoothing
	Modeling of Volumetric Vector Field
	User Interface
	Algorithm

	Modeling of Volumetric Frame Field
	User Interface
	Algorithm

	Application 1: Electrophysiological Simulation of Heart Ventricles
	Background and Motivation
	Results

	Application 2: Active Deformation of Unarticulated Objects
	Background and Motivation
	Algorithm
	Results

	Raster-Based Method for Representing Detailed Internal Structures using Anisotropic Solid Textures
	Overview
	User Interface
	Texture Type 0-A
	Texture Type 0-B
	Texture Type 0-C
	Texture Type 1-A
	Texture Type 1-B
	Manual Pasting of Textures

	Algorithm
	Rendering an LST Model
	Construction of an LST Model

	Results
	Limitations

	Vector-Based Method for Representing Smooth Color Transitions using Colored 3D Surfaces
	Related Work on Vector Graphics
	Gradient Meshes
	Diffusion Curves
	Gradient Meshes vs. Diffusion Curves
	Vector Graphics for Volumes

	Diffusion Surfaces
	Definition
	Algorithm for Generating Cross-Sections
	Comparison of PMVC and Poisson Diffusion

	Creating Diffusion Surfaces
	Symmetry-Aware Sketching Interface
	Modeling of Small Grains
	Surface Attributes
	Synthesis of Random Variations

	Results
	Limitations

	Conclusion
	Summary of Contributions
	Limitations
	Future Directions
	Combining Raster-Based and Vector-Based Approaches
	Use of Scanned Volume Data
	Physically-Based Volume Rendering
	Biologically-Motivated Procedural Modeling
	Techniques for Interacting with Volumetric Models

	References
	Methods for Creating Solid Texture Exemplars
	Synthesis of Homogeneous Solid Textures
	Synthesis of Layered Solid Textures
	Manual Creation of Solid Textures

