
LAPPED SOLID TEXTURES: FILLING A MODEL

WITH ANISOTROPIC TEXTURES

Lapped Solid Textures: 異方性ソリッドテクスチャを用いた

中身を持つ 3次元物体のモデリング

by

Kenshi Takayama

高山　健志

A Master Thesis

修士論文

Submitted to

the Graduate School of the University of Tokyo

on February 3, 2009

in Partial Fulfillment of the Requirements

for the Degree of Master of Information Science and

Technology

in Computer Science

Thesis Supervisor: Takeo Igarashi 五十嵐　健夫

Associate Professor of Computer Science

ABSTRACT

We present a method for representing solid objects with spatially-varying oriented tex-

tures by repeatedly pasting solid texture exemplars. The underlying concept is to extend the

2D texture patch-pasting approach of lapped textures to 3D solids using a tetrahedral mesh

and 3D texture patches. The system places texture patches according to the user-defined

volumetric tensor field over the mesh to represent oriented textures. We extend the origi-

nal technique to handle nonhomogeneous textures for creating solid models whose textural

patterns change gradually along a depth field. We identify several texture types considering

the amount of anisotropy and spatial variation and discuss methods for obtaining solid tex-

ture exemplars based on these texture types, including our novel techniques for synthesizing

nonhomogeneous solid textures and for manually designing solid textures with a painting

interface. We provide a tailored user interface for constructing tensor fields over the mesh

based on these texture types. With our simple framework, large-scale realistic solid textured

models can be created easily with little memory and computational cost. We demonstrate

the effectiveness of our approach with several examples including trees, fruits, and vegetables.

論文要旨

我々は，サイズの小さなソリッドテクスチャをサンプルとして 3次元形状内に繰り返し貼り付

けることで，サイズの大きな中身の詰まった 3次元モデルを作成することができる手法を提案す

る．基本的なアイディアは，既存のサーフェス上でのパッチベースのアルゴリズムを，2次元テク

スチャを 3次元ソリッドテクスチャに，三角形メッシュを四面体メッシュにそれぞれ置き換える

ことで 3次元版に拡張するというものである．システムは 3次元テクスチャのパッチを，ユーザ

が指定した 3次元テンソル場に沿って繰り返し貼り付けていくことで，中身の詰まった 3次元モ

デルを表現する．また提案手法では，空間的遷移のあるテクスチャをモデル内に定義されたデプ

ス場に合わせて並べることが可能である．我々はソリッドテクスチャのサンプルを，その異方性

の度合いおよび空間的遷移の度合いに基づいていくつかのタイプに分類し，これに基づいたテク

スチャサンプルの合成方法についても議論する．その中で我々は，空間的に遷移するテクスチャ

の合成手法およびペイントインタフェースによるテクスチャの直接的なデザイン手法を新しく提

案する．我々はモデル上にテンソル場をデザインするためのインタフェースをテクスチャのタイ

プごとに適切に設計することで，直感的なテクスチャ配置の指定を可能にした．提案手法を用い

て作成した樹木・果物・野菜などモデルの例を通して，少ない計算コストと記憶容量でサイズの

大きな中身の詰まった 3次元モデルを作成するのに提案手法が有効であることを示す．

Acknowledgements

My deepest gratitude goes to my supervisor Takeo Igarashi for always encouraging

me to pursue research, and providing numerous essential comments and suggestions

to improve my unpolished demos, writings, and talks.

I would like to thank Kazuo Nakazawa and Ryo Haraguchi at National Cardiovas-

cular Center Research Institute, and Takashi Ashihara at Shiga University of Medical

Science, for providing me a chance to do a research in the field of medicine, and

supporting me enthusiastically to write a paper for a medical journal. The initial

motivation of this thesis came from the discussions with them.

Makoto Okabe, one of the coauthors of my SIGGRAPH paper, first gave me the hint

of extending lapped textures to 3D solids. My project would not have even started

without his insightful words. He also helped me with his excellent implementation

of solid texture synthesis despite his own SIGGRAPH submission and Ph.D. thesis.

Takashi Ijiri, another coauthor, helped me with his nice 3D modeling of trees and

other fruits. His continuous positive comments on my project made me believe that it

deserves publication at SIGGRAPH. Shigeru Owada at Sony CSL gave me his helpful

feedback on my project in its early stage. I thank anonymous SIGGRAPH reviewers’

essential comments and suggestions which improved my paper a lot. This project was

funded in part by Information-technology Promotion Agency (IPA), Japan.

I would like to thank all the members at the Igarashi laboratory for their discussions

and funny jokes.

And finally, I am grateful for my family’s constant support and love.

Contents

1 Introduction 1

1.1 Backgrounds . 1

1.1.1 Surface-based 3D graphics . 1

1.1.2 Volume graphics . 2

1.2 Our contributions . 3

1.2.1 Publications . 4

2 Related Work 5

3 Classification of Solid Textures 7

3.1 Anisotropy level . 8

3.2 Variation level . 8

3.3 Seven types of texture . 8

4 Methods for Creating Solid Texture Exemplars 10

4.1 Review of solid texture synthesis from 2D exemplars 10

4.2 An extension to synthesizing nonhomogeneous solid textures 16

4.3 A painting interface for the manual design of solid textures 20

5 User Interface 23

5.1 Texture type 0 . 23

5.2 Texture type 1-a . 23

5.3 Texture type 1-b . 24

5.4 Texture type 2-a . 25

5.5 Texture type 2-b . 26

5.6 Manual pasting of textures . 27

6 Algorithm 28

6.1 Rendering an LST model . 28

i

6.1.1 Cutting . 29

6.1.2 Volume rendering . 29

6.2 Construction of an LST model . 29

6.2.1 Creating an alpha mask of the solid texture 30

6.2.2 Constructing a tensor field . 31

6.2.3 Selecting a seed tetrahedron . 32

6.2.4 Growing a clump of tetrahedra 33

6.2.5 Texture optimization . 34

6.2.6 Coverage test of tetrahedron 35

6.2.7 Creation of depth-varying solid models 35

7 Results 37

7.1 Limitations . 38

8 Conclusions 42

8.1 Future Work . 42

References 44

ii

List of Figures

1.1 Photographs of a kiwi fruit. The appearance of the cross-section differs

depending on the orientation of the cutting plane. 3

3.1 Our classification of solid textures. 7

4.1 Input and output of the algorithm. 11

4.2 The nearest neighborhood search in Ex. Note that each voxel v stores

the Euclidean distance d between neighborhoods of S and Ex as well as

the pixel location p in Ex. 12

4.3 The blend of colors from the exemplar neighborhoods to optimize the

synthesis. Each voxel u that lies in the neighborhood of voxel v con-

tributes to the new blended color of v with the color sampled from the

exemplar neighborhood of u at the location corresponding to v. 13

4.4 Pseudo-code of solid texture synthesis in multi-resolution. 14

4.5 Pseudo-code of texture optimization phase. Ni(v) denotes a set of vox-

els that constitute v’s neighborhood on the plane orthogonal to i-axis. 15

4.6 Pseudo-code of histogram matching. 16

4.7 Real-world examples that can be represented using layered solid tex-

tures: (a) stratum and (b) cake. 16

4.8 The estimation of a layered solid texture only from a 2D texture exem-

plar of the cross-section parallel to the depth direction. 17

4.9 Additional control map channel encoding depth information fed to the

synthesis algorithm. (a) A depth control map augmented to the 2D

exemplar. (b) The depth-aware initialization of the synthesis volume at

the coarsest level. 18

4.10 A problem of severe sweeping artifact appears with our naive extension

of only using additional depth map channel. 18

iii

4.11 The cause of the sweeping artifact. Neighborhoods of the synthesis

volume in the two directions tends to match the same neighborhood in

the 2D exemplar. 19

4.12 A modified version of the neighborhood matching process to deal with

the sweeping artifact. (middle) We collect the two best matching neigh-

borhoods for each of the two directions (numbers displayed near the

neighborhood squares mean distances of the matching). (right) A sim-

ple selection is performed to avoid the matched neighborhoods in the

two directions pointing to the identical location in the 2D exemplar. . 19

4.13 The effect of our simple scheme removing the severe sweeping artifact

seen in Figure 4.10. Notice how the appearances on the cross-sections

orthogonal to the depth direction are well synthesized thoroughly from

a 2D exemplar parallel to the depth direction. 20

4.14 Photographs of cross-sections of a tree (left) and a carrot (right). Notice

that the variance in the direction of the central axis is very small. . . . 21

4.15 The process of creating a texture of carrots. The system sweeps the

user-specified 2D image in 3D space (left), applies some noise (middle),

and adds a thin layer of exterior skin to create the carrot texture (right). 21

4.16 The process of creating a texture of kiwi fruits. After the system sweeps

the user-specified 2D cross-sectional image without seeds (left), the user

loads a 3D model representing the seed geometry (middle left), and

pastes it one-by-one onto the 3D texture (middle right), to finally obtain

the kiwi fruit texture (right). 22

5.1 Modeling process for texture type 0. (a) Moving the texture patch

by dragging with the mouse. (b) Changing the texture scale with the

mouse wheel. (c) User-specified texture scaling. (d) Result of automatic

filling (rendered with displacement mapping). 24

5.2 Modeling process for texture type 1-a. (a) Drawing strokes to spec-

ify local vector fields. (b) Setting the texture scaling. (c) Result of

automatic filling. 24

5.3 Modeling process for texture type 1-b. (a) Multi-face-fill tool. (b)

Single-face-fill tool modifying the colored region. (c) Stroke tool. (d)

Computed depth field. (e) Result of automatic filling. 25

iv

5.4 Modeling process for texture type 2-a. (a) Specifying the depth field.

(b) Specifying the secondary directions by drawing strokes on layers.

(c) Setting the texture scaling. (d) Result of automatic filling. 26

5.5 Modeling process for texture type 2-b. (a) Specifying the depth field.

(b) Specifying the secondary directions by drawing strokes on layers.

(c) Result of automatic filling. 26

5.6 Manual pasting of additional textures. (a) Solid texture exemplar to

be pasted. (b) Moving and rotating the texture patch by dragging with

the mouse. (c) Changing the texture scale with the mouse wheel. . . . 27

6.1 Cutting operation. (a) User-drawn stroke across the 3D model. (b)

Scalar field computed from the stroke. (c) Resulting cross-sectional

surface mesh. 29

6.2 Manual creation of a 3D alpha mask. (a) 3D model of the shape of the

mask. (b) Cross-sections of the alpha mask. 30

6.3 The optimization minimizes the difference vectors di
r,d

i
s,d

i
t between

the texture coordinate axes (r̂, ŝ, t̂) and the transformed tensor axes

(R′
i,S

′
i,T

′
i). 34

6.4 Predefined sampling points used for coverage test of overlapping texture

patches. 35

6.5 (a) A problem occurs if we use only a single alpha mask. (b) The use

of three types of alpha mask solves this problem. 36

6.6 Three types of alpha mask: (a) outer part, (b) middle part, and (c)

inner part. 36

7.1 Models filled with overlapping solid textures: (a) kiwi fruit, (b) carrot,

and (c) tree (the grayscale texture represents the displacement map

channel). Note that the input solid textures include surface textures as

well as interior textures. 38

7.2 Results of our method. (a) Watermelon. (b) Volume rendering of a

fibrous tube. (c) Strata. (d) Cake. 40

7.3 Artifacts around tensor field singularities. 41

7.4 Failure case with a highly structured texture. (a) A curved cylinder

filled with bricks shows (b) blurring and (c) misalignment artifacts. . . 41

v

Chapter 1

Introduction

1.1 Backgrounds

1.1.1 Surface-based 3D graphics

The most basic way to model a 3D object on a computer is to define its 3D surface

shape using one of those geometric representations, such as triangular or quadrilateral

polygon mesh, Non-Uniform Rational B-Spline (NURBS) surface, and subdivision

surface. In order to decorate the object surface with further detailed and small-scale

features that cannot be handled with geometric elements, texture images are usually

applied onto the surface, which are either made from real-world photographs, painted

by artists, or generated automatically using some procedural functions.

The most basic form of such texture is RGB color texture, but other types of

textures have also been explored to achieve further rich and detailed appearance:

bump map [2] is used to show bumpy effect by altering surface normals, displacement

map [4] is used to alter the geometry itself by moving each surface vertex along its

normal direction, and bidirectional texture function (BTF) [7] is used to model view-

and light-dependent behavior of material appearance appropriately by exploiting huge

image database captured under various lighting and viewing directions.

In addition to these techniques for planar 2D textures, volumetric 3D textures

have also been applied onto the object surface creating “thin shells” around the ob-

ject, to achieve various effects, such as fur [15], small-scale geometric detail [26], and

nonhomogeneous subsurface scattering [3].

1

1.1.2 Volume graphics

While surface-based techniques described in the previous section allow us to produce

quite convincing rendering results, it is still difficult to perform volumetric operations

on 3D models in a realistic and interactive manner. Examples of volumetric operations

include cutting, tearing, peeling, carving, and smashing of 3D objects, which we do

with real-world objects in our daily lives. Possible applications of such interactions

on a computer would include virtual cooking practice system, virtual surgery training

system, communication support system for doctors and patients, and educational tool

for science classes.

Despite its importance, advances in techniques aimed at such volumetric effects, or

volume graphics, have been relatively slow compared to surface-based graphics tech-

niques. This is mainly because of difficulties in obtaining 3D models with internal

material information, which we call solid textured models.

The most straightforward method for obtaining such a model would be to capture

internal appearance of a 3D object by making many thin slices of it and taking a

photograph for each slice [1]. However, this method requires a high-accuracy slicer

machine, which is not accessible for many people. Also, it obviously destroys the

object, which would be problematic in some cases. Computed Tomography (CT) and

Magnetic Resonance Imaging (MRI) technologies have been commonly used in the

field of medicine and engineering in order to examine the internal structure of a 3D

object in a noninvasive manner, but the expensive measurement equipments required

for these methods prohibit the frequent use of them in other fields.

Methods for obtaining solid textured models without capturing real-world volume

data can be roughly categorized into three approaches: the procedural approach, run-

time 2D texture synthesis on cross-sections, and example-based 3D solid texture syn-

thesis. The first approach (e.g., [32, 6]) allows the design of an arbitrary solid texture

by writing an explicit program, but this is difficult for nonexpert users. The second

approach (e.g., [29, 33]) provides efficient and intuitive ways to create quasi-solid tex-

tured models simply by giving example 2D images on cross-sections. However, these

methods have several limitations (e.g., inconsistency among different cross-sections

or difficulty in handling textures with discontinuous elements, such as seeds), which

sometimes cause unrealistic artifacts. The last approach (e.g., [14, 17]) allows the user

to create realistic and consistent solid textured models made of various materials by

explicitly synthesizing volumetric textures from 2D examples. However, the amount

of data and computational cost become problematic for large-scale 3D models because

2

the number of voxels grows cubically as the model size increases.

1.2 Our contributions

Our goal is to create large-scale solid textured models efficiently using 3D solid texture

exemplars. The basic concept is to extend the 2D texture patch-pasting approach of

lapped textures [34] to 3D solids by replacing the 2D texture and triangular mesh with

a 3D texture and tetrahedral mesh. This enables the creation of consistent large-scale

solid textured models without computing and storing individual voxel colors.

We made various extensions to the original technique to make it work for solids.

First, our method can arrange solid textures along a tensor field (i.e., a set of three

orthogonal vector fields) instead of a vector field. This is important because many real-

world objects actually have internal local tensor fields. For example, the horizontal

and vertical cross-sections of a kiwi fruit appear different (Fig. 1.1), which shows that

there is a local tensor field inside the fruit that consists of the circumferential and the

vertical directions in addition to the depth direction. We can create such anisotropic

solid models using appropriate solid texture exemplars and arranging them along user-

specified tensor fields.

Figure 1.1: Photographs of a kiwi fruit. The appearance of the cross-section differs

depending on the orientation of the cutting plane.

While the original technique was limited to homogeneous textures, we have ex-

tended it to handle nonhomogeneous (or ‘layered’) textures. By considering the depth

of the layers during the texturing process, we can create depth-varying solid textured

models for objects such as kiwi fruits, carrots, and trees, whose appearance changes

gradually in the depth direction.

We classify solid textures into several types according to the amount of anisotropy

and spatial variation, and discuss how to obtain such texture exemplars based on our

3

classification. We first briefly review an existing method for synthesizing homogeneous

3D solid textures from 2D images, and then describe how to extend it to nonhomo-

geneous solid texture synthesis. In contrast to these completely automatic texture

synthesis methods, we also propose a painting interface for manually designing 3D

textures which would be difficult to handle with existing automatic algorithms.

For each texture type, we provide a tailored user interface for the tensor field

design and an algorithm for the texture patch arrangement. A sketching interface is

used to specify the vector field, and a painting interface is used to define the depth

field inside the model. The system computes a tensor field from the user-specified

vector orientation and the gradient of the depth field, and pastes texture exemplars

onto the model so that they align with the tensor field.

Using our method, various solid textured objects can be designed easily and created

efficiently with little memory and computational cost. We demonstrate the effective-

ness of our approach on several examples including trees, fruits, and vegetables.

1.2.1 Publications

Our technique to create solid textured models by repeatedly pasting solid texture

patches was previously published and presented as: Lapped Solid Textures: Filling

a Model with Anisotropic Textures [39] at ACM SIGGRAPH 2008 in Los Angeles,

USA, in collaboration with Makoto Okabe, Takashi Ijiri and Takeo Igarashi at The

University of Tokyo.

We applied our sketch-based interface for volumetric tensor field design to the

modeling of myocardial fiber orientation aimed at electrophysiological simulation of

ventricles of heart, which was published as: A Sketch-Based Interface for Modeling

Myocardial Fiber Orientation that Considers the Layered Structure of the Ventricles

[38], in collaboration with Takashi Ashihara at Shiga University of Medical Science,

Takashi Ijiri and Takeo Igarashi at The University of Tokyo, Ryo Haraguchi and Kazuo

Nakazawa at National Cardiovascular Center Research Institute.

4

Chapter 2

Related Work

One common approach to creating solid textured models is to use procedural methods.

Earlier work by Perlin [32] produced realistic solid textures by developing material-

specific mathematical models using noise functions. Cutler et al. [6] created layered

solid models by specifying depth and material information in a scripting language.

However, these methods are not accessible to nonexpert users because of the difficulties

in writing the appropriate code.

Another approach is to synthesize 2D cross-sectional images every time the model

is cut. Owada et al. [29] proposed a modeling system in which the user associates 2D

reference images with the object’s cross-sections via an intuitive user interface. The

system then performs 2D texture synthesis on the cross-sections while considering the

user-specified guidance information. By combining three types of texture, complex vol-

umetric illustrations such as teeth and cakes can be created in a short time. However,

the consistency among different cross-sections was not considered, and the approach

leads to unrealistic appearances in some cases.

Pietroni et al. [33] proposed a similar method to produce photorealistic images

on cross-sections. In their system, the user first takes several photographs of the

cross-sections of a real object and places them in 3D space so that they align with

the cross-sections of a virtual 3D model. When the model is cut, the system morphs

the input photographs to produce cross-sectional images. However, the morphing

approach is applicable to smoothly varying patterns only and cannot handle textures

with discontinuous elements, such as seeds.

Owada et al. [28] proposed an interface for directly designing volumetric models

by segmenting the internal region of a 3D model into several regions and placing many

colored particles inside the segmented regions. The user draws strokes on the cross

5

sections of the 3D model to specify the segmentations, and puts several colored parti-

cles inside each segmented region as a sample. The system analyzes the distribution of

the input particles and synthesizes many particles accordingly to fill the entire region.

However, their system relies solely on the manual specification of colored particles

and does not allow image-based modeling, which makes it difficult to create realistic

results.

Example-based solid texture synthesis actually fills 3D volumetric space with pat-

terns seen in example 2D images. Earlier methods were based on a parametric ap-

proach using global statistics, such as histograms [12], spectra [11], and their com-

bination [8]. These methods only work well for textures whose appearance can be

fully captured by such global statistics, and cannot synthesize textures with macro

structures, such as a brick wall. To overcome this issue, the nonparametric approach

was later used [42, 35, 17], and recent work by Kopf et al. [17] produced realistic solid

textures from 2D exemplars by combining texture optimization [18] and histogram

matching [12]. There are some other approaches to solid texture synthesis including

procedural shader-based methods [19] and stereology-based methods [14], although

they were designed for relatively limited texture types.

Example-based solid texture synthesis has advantages over the other approaches

because it can generate consistent and detailed textures from 2D examples. The

drawback, however, is the cost in both computation and memory, as it explicitly

computes and stores a dense 3D array of voxels covering the entire target model.

Although recent work by Dong et al. [9] alleviated this problem by limiting the

synthesis domain to only around the surface and performing a spatially deterministic

synthesis algorithm on GPU which is extended from the parallel deterministic texture

synthesis in 2D [20], the fundamental problem of large memory requirements when

dealing with large-scale solid textured models still exists. In addition, a nontrivial

extension is necessary to create spatially-varying oriented textures in a geometry-

dependent manner. Our aim is to solve these problems by applying the 2D patch-

based approach of lapped textures [34] to 3D solid textures. While the lapped textures

technique has already been extended to 3D shell textures for real-time furs on surfaces

[21], to our knowledge, application of this approach to solid textures has not been

explored previously.

6

Chapter 3

Classification of Solid Textures

We first classify solid textures into several types as we provide a different user interface

and construction algorithm for each. As shown in Figure 3.1, our classification is based

on two aspects of solid textures: anisotropy level and variation level.

Anisotropy level

V
ar

ia
tio

n
le

ve
l

Tilability

Type 0

Type 1-b

Type 1-a Type 2-a

Type 2-b

Type 2-c

Type 2-d

3D

2D

1D

0 1 2

0

1

2

3

–

–

–

–

– Non-tilable

Figure 3.1: Our classification of solid textures.

7

3.1 Anisotropy level

The anisotropy level describes how the appearance of a cross-section varies depending

on the orientation of the cutting plane. Anisotropy level 0 means that the texture is

isotropic and the cross-section looks similar regardless of its orientation. Anisotropy

level 1 means that the texture has an axis, and its cross-section shows two different

appearances depending on whether its orientation is parallel or perpendicular to the

axis. This type of texture requires a vector field for alignment when placed in 3D space.

Anisotropy level 2 means that the cross-section shows three different appearances

depending on the orientation. A tensor field (a set of three orthogonal vector fields)

is required to place this type of texture in 3D space.

3.2 Variation level

The variation level corresponds to the number of directions in which the textural

pattern changes gradually. Variation level 0 means that there is no gradual variation

in the texture and therefore the texture is homogeneous everywhere. Variation level 1

means that the texture has a single direction in which its appearance changes gradually.

Variation levels 2 and 3 mean that the texture has two and three axes of variation

respectively. The variation level also represents the tilability of the texture. Variation

level 0 texture can be tiled three-dimensionally, variation level 1 texture can be tiled

two-dimensionally, and variation level 2 texture can only be tiled linearly. Variation

level 3 texture cannot be tiled in any dimension.

3.3 Seven types of texture

The variation level is limited by the anisotropy level and therefore there can be only

7 types of texture in our classification. Type 0 is the well-known isotropic textures.

Type 1-a corresponds to “anisotropic” textures in [17] or “oriented” textures in [29].

Type 1-b corresponds to “layered” textures in [29]. This paper covers types 2-a and 2-b

in addition to these other texture types. Although the basic framework is sufficiently

general to cover all 7 types, we do not support 2-c and 2-d in the current prototype

implementation because we have not encountered many interesting real-world exam-

ples of these types. In addition, our approach is essentially a tiling method and is not

very effective for textures with limited tilability.

We do not claim that our classification describes all the real-world objects, although

we believe that it is possible to represent most objects using the solid textures classified

8

as outlined above individually or in combination.

9

Chapter 4

Methods for Creating Solid Texture

Exemplars

In this chapter, we discuss methods for creating solid texture exemplars required for

our lapped solid texture framework. We first briefly review a method for synthesizing

homogeneous solid textures from 2D exemplars proposed by Kopf et al. [17] which can

be used to create texture types 0, 1-a, and 2-a in Chapter 3. This will next be extended

to nonhomogeneous (or ‘layered’) solid texture synthesis which can handle the texture

type 1-b. We also present a painting interface for manually designing solid textures

that would be difficult to handle with existing automatic synthesis algorithms.

4.1 Review of solid texture synthesis from 2D exemplars

Here we only review the most fundamental part required for implementing solid texture

synthesis algorithm in [17], and omit other things such as algorithmic backgrounds

and nonessential details, because our aim is only to make it easier for readers to

understand our extension of the technique to layered solid texture synthesis, which

will be described in the next section. Readers may refer to the original article [17] for

more details.

The input to the algorithm consists of three exemplar images Ex, Ey, and Ez

corresponding to three cross-sections orthogonal to x-, y- and z-axis, respectively (Fig.

4.1(left)). Note that Ey and Ez can be identical to Ex when synthesizing isotropic solid

texture. The output is a solid texture S whose appearances on its three cross-sections

orthogonal to x-, y-, and z-axis are always similar to Ex, Ey, and Ez, respectively

(Fig. 4.1(right)).

10

Ez,

Ey,

Ex,

S,

x,y,

z

Figure 4.1: Input and output of the algorithm.

The synthesis progresses in a multi-resolution manner, so the first step is to down-

sample the exemplar images several times (usually twice is enough) to create exemplars

for each level. The solid texture at the coarsest level is first initialized with random

color values sampled from the exemplars. At each synthesis level, the currently synthe-

sized result is refined iteratively through two phases: neighborhood search and texture

optimization.

In the neighborhood search phase, we search for each voxel the best matching

neighborhood in each of three exemplars, and store its pixel location as well as its

Euclidean distance to the neighborhood of the current synthesis volume (Fig. 4.2).

This is a standard nearest neighbor search problem in a high dimensional vector space,

which can be accelerated with approximation using the Principal Component Analysis

(PCA) projection and the Approximate Nearest Neighbor (ANN) library [24].

11

z Search

S,

v,

Ex,

p

x,

y,

Figure 4.2: The nearest neighborhood search in Ex. Note that each voxel v stores the

Euclidean distance d between neighborhoods of S and Ex as well as the pixel location

p in Ex.

In the texture optimization phase, voxel colors in the current synthesis volume are

updated according to the neighborhood matching result. The update of a voxel is

simply done by taking the weighted blend of pixels in all the exemplar neighborhoods

that overlaps the voxel (Fig. 4.3). The blending weight is set inversely proportional to

the distance between the neighborhood in the synthesis volume and the neighborhood

in the exemplar. The weight is further altered by the histogram matching scheme

[12], which makes it even small if a color to be blended is too much abundant in the

currently synthesized volume compared to the exemplars. Note that the histogram

of the synthesized volume is updated every time a new blended color is computed for

each voxel.

12

z
Blend

P [u]

Px[u] + v− u,

S,

v,
Ex,

u,
x,

y,Px[u]

Figure 4.3: The blend of colors from the exemplar neighborhoods to optimize the

synthesis. Each voxel u that lies in the neighborhood of voxel v contributes to the

new blended color of v with the color sampled from the exemplar neighborhood of u

at the location corresponding to v.

Pseudo-codes for the algorithm overview, the texture optimization procedure, and

the histogram matching are shown in Figures 4.4, 4.5, and 4.6, respectively.

13

SolidSynthesisFrom2D(ELmax
x , ELmax

y , ELmax
z)

for l = Lmax − 1 to 0

El
x = downsample(El+1

x);

El
y = downsample(El+1

y);

El
z = downsample(El+1

z);

end

S0 = random init(E0
x, E0

y , E0
z);

for l = 0 to Lmax

HE = calc histogramE(El
x, El

y, El
z); // compute histograms

HS = calc histogramS(Sl);

repeat

(Px, Dx) = searchx(Sl, El
x); // (P, D) = (pixel location, neighborhood distance)

(Py, Dy) = searchy(Sl, El
y);

(Pz, Dz) = searchz(Sl, El
z);

Sl := optimize(Sl, El
x, El

y, El
z,HE ,HS , Px, Dx, Py, Dy, Pz, Dz);

until converged(l); // some convergence criteria

if l == Lmax return SLmax ;

Sl+1 = upsample(Sl);

end

end

Figure 4.4: Pseudo-code of solid texture synthesis in multi-resolution.

14

optimize(S, Ex, Ey, Ez,HE ,HS , Px, Dx, Py, Dy, Pz, Dz)

for each voxel v ∈ S (in random order)

color acc = 0;

weight acc = 0;

for i ∈ {x, y, z}
for each u ∈ Ni(v) // neighborhood of v

color = Ei[Pi[u] + v − u];

weight = Di[u]−1.2;

weight := weight/(1 + histogram matching(color,HE ,HS));

color acc := color acc + weight ∗ color;

weight acc := weight acc + weight;

end

end

color old = S[v];

color new = color acc/weight acc;

S[v] := color new;

HS := update histogramS(HS , color old, color new);

end

return S;

end

Figure 4.5: Pseudo-code of texture optimization phase. Ni(v) denotes a set of voxels

that constitute v’s neighborhood on the plane orthogonal to i-axis.

15

histogram matching(color,HE ,HS)

result = 0;

for each channel j

bin = get bin(colorj);

result := result + max (0,HS,j [bin]−HE,j [bin]);

end

return result;

end

Figure 4.6: Pseudo-code of histogram matching.

4.2 An extension to synthesizing nonhomogeneous solid tex-

tures

The goal of our method is to synthesize nonhomogeneous, or ‘layered’, solid texture

exemplars, which belong to the texture type 1-b in our classification (see Chapter 3).

Examples of real world objects that can be represented using such layered texture

exemplars include strata and cakes, as shown in Figure 4.7.

(a) (b)(a) (b)

Figure 4.7: Real-world examples that can be represented using layered solid textures:

(a) stratum and (b) cake.

This kind of solid textures is difficult to handle with the original algorithm of Kopf

et al. [17], because its 2D exemplars corresponding to the cross-sections orthogonal

to the depth direction are spatially-variant, and they are not available in many cases.

16

Therefore, we need to estimate the entire solid texture only from a 2D exemplar

corresponding to the cross-section parallel to the depth direction, which is abundant

in photographs, as shown in Figure 4.8.

?

z (= depth direction)

?
x,

y,

Figure 4.8: The estimation of a layered solid texture only from a 2D texture exemplar

of the cross-section parallel to the depth direction.

Our basic idea to solve this problem is to feed the algorithm with another con-

trol map channel that encodes the depth information in addition to the three RGB

color channels (Fig. 4.9a). As described in the original article [17], their method is

already capable of handling multi-channel texture synthesis using additional channels

that encode various information such as feature distance, specular, shininess, and dis-

placement, and therefore our extension is quite trivial. We also modified the process of

synthesis volume initialization at the coarsest level: instead of initializing each voxel

with a pixel sampled from the exemplar in a totally random manner, we initialize each

voxel with a pixel randomly sampled from the 2D exemplar which has the same depth

value (Fig. 4.9b). Note that, since we do not have any 2D exemplars orthogonal to the

depth direction, we perform the neighborhood matching and the texture optimization

only in the other two directions.

17

(a) (b)

Figure 4.9: Additional control map channel encoding depth information fed to the

synthesis algorithm. (a) A depth control map augmented to the 2D exemplar. (b)

The depth-aware initialization of the synthesis volume at the coarsest level.

However, this simple extension can easily lead to a severe sweeping artifact as

shown in Figure 4.10.

Figure 4.10: A problem of severe sweeping artifact appears with our naive extension

of only using additional depth map channel.

The reason of this problem is that the above extension accepts a simple sweep

of the 2D exemplar in a direction orthogonal to the depth direction and oblique to

both of the other two directions, as an optimized synthesis result. In other words,

for each voxel, the two neighborhoods of the current synthesis volume in each of the

two directions are very likely to best match with the same neighborhood of the 2D

exemplar (Fig. 4.11).

18

Depth

Depth
directionDepth

direction

direction

Figure 4.11: The cause of the sweeping artifact. Neighborhoods of the synthesis volume

in the two directions tends to match the same neighborhood in the 2D exemplar.

We solve this problem using the following simple scheme. In the neighborhood

search phase, for each voxel, we collect the two best matching neighborhoods in each

of the two directions (Fig. 4.12(middle)). If the first best matching neighborhoods in

borh of the two directions point to the same location in the exemplar, we select one

of the two based on the matched distance and assign that pixel as the best matching

neighborhood for the selected direction. The neighborhood for the other direction is

chosen to the second best matching neighborhood (Fig. 4.12(right)).

0.8

1.5
1.2

1.8
Select

Search

0.8
1.8

Search

Figure 4.12: A modified version of the neighborhood matching process to deal with the

sweeping artifact. (middle) We collect the two best matching neighborhoods for each

of the two directions (numbers displayed near the neighborhood squares mean dis-

tances of the matching). (right) A simple selection is performed to avoid the matched

neighborhoods in the two directions pointing to the identical location in the 2D exem-

plar.

Figure 4.13 shows how this simple scheme works well to remove the severe sweeping

19

artifact seen in Figure 4.10.

Figure 4.13: The effect of our simple scheme removing the severe sweeping artifact

seen in Figure 4.10. Notice how the appearances on the cross-sections orthogonal to

the depth direction are well synthesized thoroughly from a 2D exemplar parallel to

the depth direction.

4.3 A painting interface for the manual design of solid textures

We propose a simple painting interface for manually designing solid textures that

would be still difficult to handle for automatic synthesis algorithms. Specifically, we

aim to design textures representing kiwi fruits, carrots, and trees, which are required

to create results we will show in Chapter 7. We observe that objects such as trees

and carrots show very small variance in the direction parallel to the central axis, as

shown in Figure 4.14. Therefore, our system allows the user to create such textures

by specifying an image of a cross-seciton perpendicular to the central axis (Fig. 4.15)

which is then sweeped along the direction of the axis. The user can further add some

randomness by globally applying noise functions [32, 5]. The user can also add a thin

layer of the exterior skin by specifying an appropriate image.

20

Direction of the central axis

Figure 4.14: Photographs of cross-sections of a tree (left) and a carrot (right). Notice

that the variance in the direction of the central axis is very small.

Cross-sectional image

Sweep

Add noise

Skin image

Add

Carrot texture

Figure 4.15: The process of creating a texture of carrots. The system sweeps the

user-specified 2D image in 3D space (left), applies some noise (middle), and adds a

thin layer of exterior skin to create the carrot texture (right).

In the case of the kiwi fruit texture, we observe that the cross-section of kiwi fruits

also has small variance in the direction parallel to the central axis similarly to carrots

and trees, except for its many discrete seeds as shown in Figure 1.1. Therefore, we

allow the user to create such textures by first sweeping a cross-sectional image that

does not contain any seeds, and next adding discrete seeds individually (Fig. 4.16).

After the user removes seeds from the original cross-sectional image using existing

photo editing tools such as PhotoShop, the system sweeps it in the direction parallel

to the central axis. The user can then load a 3D model representing the 3D geometry

21

of the seed created using existing 3D modeling tools such as FiberMesh [25] into the

system. The user adjusts the position, orientation and scaling of the seeds with mouse

dragging so that they are placed in appropriate locations, and fills its inside with the

currently selected color by double-clicking. Repeating this process many times, the

kiwi fruit texture can be finally obtained. The user can further modify undesired

artifacts by locally blurring the individual voxels.

Remove
seeds

Cropped from
a photo

3D model
of a seed

Paste seeds
one-by-one…

Add noise &
skin layer

Sweep

Figure 4.16: The process of creating a texture of kiwi fruits. After the system sweeps

the user-specified 2D cross-sectional image without seeds (left), the user loads a 3D

model representing the seed geometry (middle left), and pastes it one-by-one onto the

3D texture (middle right), to finally obtain the kiwi fruit texture (right).

22

Chapter 5

User Interface

The user first loads a geometry model (triangular mesh) and exemplar solid texture

data (cubic array of RGB colors). The user can rotate, translate, and scale the camera

view by dragging with the right mouse button. The user can also cut the model and

see its cross-sectional surface by drawing a freeform stroke across the model [13]. After

the input geometry and texture are specified, the system shows a dialog box to allow

the selection of a texture type. We explain the modeling process for each texture

type in the following sections. Note that the details of the algorithm are described in

Chapter 6.

5.1 Texture type 0

This type corresponds to isotropic textures, such as a sponge or concrete. The user

specifies the texture scaling in this case. The user first puts a solid texture onto the

model by clicking, and moves it interactively by dragging with the mouse (Fig. 5.1a).

The user can also change the texture scale interactively using the mouse wheel (Fig.

5.1b). When satisfied, the user can set the local texture scale by double-clicking on

the desired position of the model. After the texture scaling is set appropriately (Fig.

5.1c), the system fills the model with the texture taking into account such user-specified

texture scaling (Fig. 5.1d).

5.2 Texture type 1-a

This type represents textures with flow or fiber orientation, such as bamboo and

muscle. The user first specifies a volumetric vector field over the model. The user can

draw strokes on the surface or cross-sections of the model to specify the local vector

23

(a) (b) (d)(c)

Figure 5.1: Modeling process for texture type 0. (a) Moving the texture patch by

dragging with the mouse. (b) Changing the texture scale with the mouse wheel. (c)

User-specified texture scaling. (d) Result of automatic filling (rendered with displace-

ment mapping).

field (Fig. 5.2a). A similar interface was described previously [29]. After several

strokes are drawn, the user then sets the texture scaling (Fig. 5.2b) as described in

Section 5.1. Finally, the system fills the model with the texture (Fig. 5.2c).

(a) (b) (c)

Figure 5.2: Modeling process for texture type 1-a. (a) Drawing strokes to specify local

vector fields. (b) Setting the texture scaling. (c) Result of automatic filling.

5.3 Texture type 1-b

This type represents models with depth-varying texture, such as cakes and strata. The

user specifies a depth field over the model using a painting user interface similar to that

reported by Owada et al. [29]. The user first chooses the color that represents the depth

(red and blue correspond to the outermost and the innermost parts, respectively). The

user can then paint the model using three tools: a multi-face-fill tool, a single-face-fill

tool, and a stroke tool. The multi-face-fill tool assigns a color to multiple surface

triangles that are adjacent to each other and have the same color. If adjacent triangles

have a curvature larger than a certain threshold, the system treats them as if they

were not adjacent, which allows the user to fill, for example, only the side faces of a

cylinder (Fig. 5.3a). The single-face-fill tool assigns a color to a single surface triangle

clicked by the user (Fig. 5.3b), which allows modifying and controlling the result of

24

multi-face-fill tool. Finally, the stroke tool allows the user to draw colored strokes on

the surface and cross-sections of the model (Fig. 5.3c). This tool is useful to mark

the central axis of radial textures. When the user presses the “Update” button, the

system interpolates the depth value over the model (Fig. 5.3d). After the depth field

is set appropriately, the system then fills the model with the texture while considering

the depth (Fig. 5.3e). Texture scaling and orientation are derived automatically from

the gradient of the depth field unlike the case of texture type 1-a.

(a) (b) (c) (d) (e)

Figure 5.3: Modeling process for texture type 1-b. (a) Multi-face-fill tool. (b) Single-

face-fill tool modifying the colored region. (c) Stroke tool. (d) Computed depth field.

(e) Result of automatic filling.

5.4 Texture type 2-a

This type represents textures whose cross-sections have three different appearances

depending on their relative orientations with respect to the local tensor field; a repre-

sentative example would be flattened fibers. The user creates a tensor field over the

model for this type of texture. As a tensor field is a set of three orthogonal vector

fields, it is difficult for the user to create an appropriate tensor field by manually draw-

ing strokes for each vector field separately. Therefore, we divided the process into two

steps. The user first creates a depth field over the model, as described in Section 5.3

(Fig. 5.4a). The primary directions are set as the gradient directions of the depth

field. Next, the user can draw strokes on each “layer” (iso-surface of the depth field) to

specify the secondary directions (Fig. 5.4b). This ensures that the secondary direction

is always perpendicular to the first. The third direction is set to the cross-product of

the other two. The original depth field is discarded once the tensor field is computed.

After the tensor field is set appropriately, the user moves on to the process of setting

the texture scaling (Fig. 5.4c), followed by automatic filling (Fig. 5.4d).

25

(a) (b)

(c) (d)

Figure 5.4: Modeling process for texture type 2-a. (a) Specifying the depth field.

(b) Specifying the secondary directions by drawing strokes on layers. (c) Setting the

texture scaling. (d) Result of automatic filling.

5.5 Texture type 2-b

This type of texture also represents depth-varying models, as in type 1-b, but the two

perpendicular cross-sections parallel to the depth direction appear different. Examples

include kiwi fruits, carrots, and trees. The modeling process is identical to type 2-a

(Section 5.4), but in this case the original depth field is preserved and used in the

synthesis process. In addition, the texture scaling is derived automatically from the

gradient of the depth field.

(a) (b) (c)

Figure 5.5: Modeling process for texture type 2-b. (a) Specifying the depth field.

(b) Specifying the secondary directions by drawing strokes on layers. (c) Result of

automatic filling.

26

5.6 Manual pasting of textures

After the system generates a solid textured model, the user can also manually paste

additional solid textures onto the model. The user first loads a solid texture exemplar

(Fig. 5.6a), which can then be moved and rotated on the model by dragging the

mouse (Fig. 5.6b). The user can also change the texture scale interactively with

the mouse wheel (Fig. 5.6c). Finally, the texture can be pasted onto the model by

double-clicking.

(a) (b) (c)

Figure 5.6: Manual pasting of additional textures. (a) Solid texture exemplar to be

pasted. (b) Moving and rotating the texture patch by dragging with the mouse. (c)

Changing the texture scale with the mouse wheel.

27

Chapter 6

Algorithm

The input to our system consists of a triangular mesh model and a solid texture

exemplar. The output is a lapped solid textured (LST) model; many overlapping pieces

of solid texture are pasted inside the mesh. The input mesh model is first converted to

a tetrahedral mesh model. Currently, we use the TetGen library [36], which produces

nearly uniform meshes using Delaunay tetrahedralization. Most of the solid texture

exemplars present in this paper were created manually using the method described in

Section 4.3. It is unrealistic to manually design a large volumetric texture, but we

only required small exemplars and so manual editing was a viable option.

We used a tetrahedral mesh to represent solid models because this representation

has certain advantages over the voxel representation for our purposes. First, it can

approximate 3D shapes well with a smaller number of elements. Second, the tetra-

hedral mesh naturally corresponds to a triangular surface mesh when we extend the

original 2D technique [34] to 3D. Finally, cross-sectioning and iso-surface extraction

can be performed easily using marching tetrahedra [40], which is similar to marching

cubes [22] except that it is faster and easier to implement.

We first describe how to render an LST model created in our system and then

describe the process of construction of LST models in detail.

6.1 Rendering an LST model

Each tetrahedron in an LST model has a list of 3D texture coordinates assigned to

each of its four vertices. To render such a model, we first convert it into a polygonal

model that consists of surface triangles with a list of 3D texture coordinates assigned

to each of its three vertices. We can then render this polygonal model using the same

run-time compositing algorithm described previously [34]. Each surface triangle is

28

rendered multiple times (approximately 10–20 times in most of our results) using the

texture coordinates in its assigned list, with alpha blending enabled.

6.1.1 Cutting

When the user cuts the model by drawing a freeform stroke (Fig. 6.1a), the system

constructs a scalar field over the tetrahedral mesh vertices, which takes negative and

positive values on the left- and right-hand sides of the stroke, respectively (Fig. 6.1b).

We used radial basis function (RBF) interpolation [41] to construct such a scalar field.

The cross-sectional surface is then obtained by extracting the iso-surface of value 0 from

the mesh (Fig. 6.1c). The texture coordinates for each triangle on the cross-section are

obtained by linearly interpolating the texture coordinates of the original tetrahedron.

The tetrahedral mesh is subdivided on the cross-section to allow subsequent cutting

operations.

+

– – –
00

– –

+ + + +

(a) (b) (c)

Figure 6.1: Cutting operation. (a) User-drawn stroke across the 3D model. (b) Scalar

field computed from the stroke. (c) Resulting cross-sectional surface mesh.

6.1.2 Volume rendering

We can also perform volume rendering on an LST model using the same approach as

described above. We first construct a scalar field over the mesh vertices to give the

distance between the camera and each vertex. We then calculate a large number of

slices of the model perpendicular to the camera direction by iso-surface extraction.

6.2 Construction of an LST model

The overall procedure closely follows the original [34], but each process contains non-

trivial extensions, which we describe in detail in the following subsections. We first

create an alpha mask of the input solid texture to make the resulting seams between

pasted textures less noticeable (Section 6.2.1). We then construct a tensor field over

29

the mesh based on user input (Section 6.2.2). The direction and magnitude of the

tensor field specify the orientation and scaling of the texture, respectively. Finally,

textures are pasted repeatedly onto the model while aligning with the tensor field.

The texture pasting process is as follows. First, a seed tetrahedron is selected

(Section 6.2.3). Then, we grow a clump of tetrahedra around the seed until it is large

enough to cover the texture patch being pasted (Section 6.2.4). Next, we perform

texture optimization which warps the pasted texture so that it aligns locally with

the tensor field (Section 6.2.5). Finally, we update the coverage of textures for each

tetrahedron (Section 6.2.6).

A depth-varying solid model is a new feature in our system. We prepared several

exemplar textures with different alpha masks and pasted them according to the depth

(Section 6.2.7).

In the following subsections, we explain the details for each process.

6.2.1 Creating an alpha mask of the solid texture

In the original 2D case, Praun et al. [34] created an alpha mask of the 2D texture using

a standard image editing tool. For a less-structured texture, they used a “splotch”

mask independent of the content of the texture. For a highly structured texture, they

created an appropriate alpha mask that preserved the important features of the texture

as much as possible.

In our 3D case, we manually created an alpha mask of the solid texture by modeling

a 3D shape of the mask using existing 3D modeling techniques, such as that reported

by Nealen et al. [25] (Fig. 6.2a). This mask is the 3D version of the “splotch” mask in

the 2D case, which can be applied to a less-structured solid texture (Fig. 6.2b). The

alpha value drops off around the boundary of the mask, which makes the resulting

seams between pasted textures less noticeable. We found that an appropriate width

of this drop-off is about 5–10% of the texture size in our experiments.

(a) (b)

Figure 6.2: Manual creation of a 3D alpha mask. (a) 3D model of the shape of the

mask. (b) Cross-sections of the alpha mask.

30

It is still very difficult, however, to create an appropriate alpha mask manually for

a highly structured solid texture that preserves the important features of the texture

as much as possible. For now, we assume all the textures in our examples are less

structured, and therefore we use a constant “splotch” mask shown in Figure 6.2 for all

the textures. However, this assumption often causes some artifacts when using highly

structured textures, and this will be discussed in detail in Section 7.1.

6.2.2 Constructing a tensor field

This process depends on the texture type. In the case of texture type 0, the system

does not create a consistent global tensor field and pastes a texture in a random

orientation each time. In the case of texture types 1-a and 1-b, the first direction

is globally defined according to the user-drawn strokes (1-a) or is set to the gradient

direction of the depth field (1-b), and the other direction is chosen randomly when

pasting each patch. In the case of texture types 2-a and 2-b, the system defines a

global tensor field whose first direction is set to the gradient direction of the depth

field with the second direction specified by the user-drawn strokes. The third direction

of the tensor is set to the cross product of the two. The magnitudes of tensors are

set to the user-specified texture scaling values, except for types 1-b and 2-b where the

texture scaling is set automatically from the depth field (see Section 6.2.7 for these

cases).

The original 2D lapped textures used Gaussian RBF over the mesh surface for

interpolation of user-specified vectors, but we used Laplacian smoothing on the tetra-

hedral mesh vertices to interpolate user-specified vectors and scaling values, because

this allows more detailed control over the interpolation process by adjusting weight

parameters. After obtaining tensors at the mesh vertices, the tensor of a tetrahedron

is given as the average of the tensors of its four vertices.

Laplacian smoothing [10] minimizes the difference between the value assigned to

each vertex and the weighted average of the values assigned to its neighboring vertices

while satisfying the user-specified constraints as much as possible. More precisely,

suppose we are solving for the texture scaling values xi assigned to each vertex vi (i =

1, . . . , n). The Laplacian δi is then defined as

δi = xi −
∑

j∈Ni

wi
jxj (6.1)

where Ni is the index set of one-ring neighboring vertices of vi and wi
j are the corre-

sponding weights. For now, we set wi
j = 1

|Ni| , which means that
∑

j∈Ni

wi
jxj is simply

31

the average of the values of the neighboring vertices. The goal is to minimize all these

Laplacians while satisfying user-specified constraints, which are formulated as follows.

When a constraint scaling value c is given at 3D position p, we first search for a tetra-

hedron T in the mesh whose barycenter is closest to p. We then calculate barycentric

coordinates λ1, . . . , λ4 on T to represent p as

λ1vi1 + λ2vi2 + λ3vi3 + λ4vi4 = p

λ1 + λ2 + λ3 + λ4 = 1

where i1, . . . , i4 are the indices of the four vertices of T . The constraint is then given

as

λ1xi1 + λ2xi2 + λ3xi3 + λ4xi4 = c. (6.2)

Minimizing Laplacians (Eq. 6.1) while satisfying the collection of constraints (Eq. 6.2)

in a least squares sense forms a sparse linear system, which can be solved quickly.

For interpolation of the user-specified vectors, we perform Laplacian smoothing for

each x-, y-, and z-component of the vectors, which are later combined and normalized.

In the case of texture types 2-a and 2-b, there is no guarantee that resulting vectors

will always be orthogonal to the first direction, i.e., the gradient direction of the depth

field. Therefore, we orthogonalize these vectors to the first direction after smoothing.

In addition, note that in the case of texture types 2-a and 2-b, we alter wi
j so

that the resulting vector field is smoother on the same depth (layer) than on different

depths. To achieve this, we set weights as

wi
j =

exp(−(di − dj)2)∑
k∈Ni

exp(−(di − dk)2)

where di is the depth value assigned to vi.

While we use Laplacian smoothing for the vectors and scaling values, we use thin-

plate RBF interpolation in the 3D Euclidean space [41] to obtain a depth field. This is

because the depth field must be defined as a smooth function in 3D space to calculate

its gradient directions accurately. We assign depth values of 0 and 1 to the outermost

(red) and the innermost (blue) regions, respectively. In the case of texture types 1-b

and 2-b, these depth values are used directly as one of the three texture coordinates

(see Section 6.2.7 for details).

6.2.3 Selecting a seed tetrahedron

We first initialize a list of “uncovered” tetrahedra with all the tetrahedra in the mesh.

For each pasting operation, one is selected at random from this list as a seed tetra-

32

hedron. After the pasting operation, tetrahedra are removed from the list if they are

completely covered by the previously pasted textures. We repeat this process until

the “uncovered” list becomes empty. In the case of manual pasting of the textures,

the seed tetrahedron is set to the one clicked by the user.

6.2.4 Growing a clump of tetrahedra

We first map the seed tetrahedron from the geometric space into the texture space, so

that its mapped tensor axes align with the standard axes of the texture space, and its

transformed central position is located in the center of the texture.

Let (R,S,T) be the three orthogonal vectors of the tensor associated with the seed

tetrahedron T . We first compute barycentric coordinates r1, . . . , r4 on T to represent

R as

r1v1 + r2v2 + r3v3 + r4v4 = R

r1 + r2 + r3 + r4 = 0

where v1, . . . ,v4 are the four vertices of T . We do the same with S and T. We then

compute the transformed vertex positions w1, . . . ,w4 in the texture space by solving

the following equations

r1w1 + r2w2 + r3w3 + r4w4 = (1, 0, 0)t

s1w1 + s2w2 + s3w3 + s4w4 = (0, 1, 0)t

t1w1 + t2w2 + t3w3 + t4w4 = (0, 0, 1)t

c1w1 + c2w2 + c3w3 + c4w4 = (0.5, 0.5, 0.5)t

where c1, . . . , c4 are the barycentric coordinates on T , which represent the position

inside T where the center of the texture should be. In the case of automatic filling,

the position is set to the barycenter of T (c1 = · · · = c4 = 0.25), while it is set to the

user-specified position in the case of manual pasting. After appropriate transformation

of vertex positions, we finally compute an affine transform matrix M that maps vi to

wi.

Next, we grow the clump by adding adjacent tetrahedra. We visit each tetrahedron

around the clump and add it to the clump if the tetrahedron satisfies the following

two conditions: its tensor is not markedly different from that of the seed, and it is

partially inside the alpha mask in the texture space when transformed by M .

33

6.2.5 Texture optimization

The purpose of texture optimization is to warp the texture so that it aligns locally

with the tensor field. More precisely, for each tetrahedron in the clump, we minimize

the difference between the tensor axes of the tetrahedron transformed into the texture

space and the standard texture coordinate axes.

The input to this process is a clump of tetrahedra {Ti} and its associated tensors

{(Ri,Si,Ti)} (i = 1, . . . , n). The output is the 3D texture coordinates {wj} for all

the vertices {vj} (j = 1, . . . , m) in the clump.

For each Ti, we first compute the barycentric coordinates ri
k, which represent Ri

in the same way as described in Section 6.2.4. We then define the difference vector di
r

between the transformed tensor axis R′
i and the standard texture axis r̂ as

di
r = ri

1wj1 + ri
2wj2 + ri

3wj3 + ri
4wj4 − (1, 0, 0)t

where j1, . . . , j4 are the indices of the four vertices of Ti. We do the same for the s

and t directions (Fig. 6.3). We minimize all these difference vectors, while satisfying

the positional constraint given to the seed tetrahedron in the same way as described in

Section 6.2.4. The optimized solution {wj} can be obtained quickly in a least squares

sense by solving a sparse linear system.

(Ri,

Si,

Ti

R
′

i

S
′

i,

,T′i)

d
i

r

d
i

s

d
i
t

r̂,

ŝ,

t̂

Geometric space Texture space

transform

Figure 6.3: The optimization minimizes the difference vectors di
r,d

i
s,d

i
t between the

texture coordinate axes (r̂, ŝ, t̂) and the transformed tensor axes (R′
i,S

′
i,T

′
i).

Note that the optimization may warp the texture coordinates such that the image

of the clump in the texture space no longer fully covers the splotch mask. In such

cases, we add the lacking tetrahedra to the clump and re-compute the optimization.

34

6.2.6 Coverage test of tetrahedron

The original 2D method [34] used a rasterization technique to test the coverage of

overlapping textures. We perform a similar computation over sampling points inside

the tetrahedra. We first create several predefined discrete sampling points (165 points

in our current prototype) inside each tetrahedron in the mesh (Fig. 6.4). Each time

a texture is pasted, we linearly sample the alpha values of the mask at these discrete

points of each tetrahedron in the clump, which are then accumulated. If the accumu-

lated alpha values of all the sampling points of a tetrahedron reach 255, we assume

that the tetrahedron is completely covered by the overlapping textures.

Figure 6.4: Predefined sampling points used for coverage test of overlapping texture

patches.

6.2.7 Creation of depth-varying solid models

We create depth-varying solid models by arranging a depth-varying solid texture so

that it aligns with the depth field defined over the target 3D model. The basic concept

is to map the clump of tetrahedra into the corresponding depth position in the texture

space instead of the central position. To achieve this, we alter the positional constraints

in Section 6.2.4 and 6.2.5 from (0.5, 0.5, 0.5)t to (0.5, dseed, 0.5,)t, where dseed is the

depth value assigned to Tseed assuming the s-axis corresponds to the depth orientation.

However, a problem occurs when we paste textures onto the inner and outer parts of

the model (Fig. 6.5a), because the alpha mask covers only the middle part of the

texture.

To solve this problem, we prepared solid textures corresponding to different layers

of the original texture, each with different alpha masks (Fig. 6.6). These were created

by simply applying the same alpha mask to different places (outer, middle, and inner).

In the texture pasting process, an appropriate texture is chosen from these three

according to the depth value of the seed tetrahedron (Fig. 6.5b).

35

(a) (b)

Figure 6.5: (a) A problem occurs if we use only a single alpha mask. (b) The use of

three types of alpha mask solves this problem.

(a) (b) (c)

Figure 6.6: Three types of alpha mask: (a) outer part, (b) middle part, and (c) inner

part.

The depth values defined over the 3D model can be used directly as the texture

coordinates of the depth direction, so we only solve for texture coordinates of the other

two directions. We have also found that the appropriate texture scaling is the inverse

of the magnitude of the depth gradient vector. This can be explained as follows.

Suppose we have a large depth gradient vector at a certain position in the 3D model.

This means that the depth value changes rapidly there, which also implies that the

region corresponds to the thin part of the 3D model. Therefore, the texture scale

should be small.

36

Chapter 7

Results

As shown in Figures 7.1 and 7.2, our results showed consistency among different cross-

sections, which was not seen in the work of Owada et al. [29]. Models in Figures 7.1a

and 7.2a contain many seeds, which can cause artifacts in the work of Pietroni et al.

[33]. Texture type 2-b is used in all the results in Figure 7.1, and the appearance of

the cross-sections differs depending on the orientation with respect to the radial axes.

Most textures of type 1-b and 2-b in our results have a thin (1–3 voxel thickness) slice

of outer skin, and our depth adjustment technique arranges solid textures successfully

so that such outer skin regions align precisely with the surfaces of the models. Cross-

sectioning is faster than run-time synthesis approaches because the computation only

involves linear sampling of texture coordinates. We can create more complex solid

models by combining several LST models together (Figs. 7.2c and 7.2d). We can also

perform volume rendering on translucent LST models (Fig. 7.2b), which is impossible

when using inconsistent quasi-solid models. This result was obtained by taking 200

slices from the model, a process that took about 3 s. Our method can be extended

easily to support other channels of textures, and we show the displacement mapping

results in Figures 7.1c and 5.1d where the grayscale displacement map channel is shown

next to the RGB texture. This is done by first subdividing the surface mesh and then

moving each vertex along its normal direction according to the displacement value

sampled there.

We implemented our prototype system using C++ and OpenGL on a notebook PC

with a 2.3-GHz CPU and 1.0 GB of RAM. The statistics of our results are summarized

in Table 7.1, which shows that our method is fairly inexpensive in terms of both

computation and memory for representing large-scale solid models. It took a relatively

long time to fill a cake model (Fig. 7.2d), because the model has a large thin sponge

37

(a)

(b)

(c)

Figure 7.1: Models filled with overlapping solid textures: (a) kiwi fruit, (b) carrot,

and (c) tree (the grayscale texture represents the displacement map channel). Note

that the input solid textures include surface textures as well as interior textures.

region that requires pasting a large number of texture patches. However, the rendering

and cross-sectioning could still be performed in real-time.

7.1 Limitations

Our method inherits the limitations of the original method [34]. First, the patch

seams become noticeable when using a texture with strong low-frequency components.

Second, artifacts appear around singularities of the tensor field, such as the center of

a depth-varying object with a radial axis (Fig. 7.3). This can be alleviated by locally

subdividing tetrahedra in such areas. Finally, as we use a constant “splotch” mask

for all the textures, blurring artifacts appear when a highly structured texture is used

(Fig. 7.4b). It is necessary to create an appropriate alpha mask that preserves the

structure of the texture as much as possible, and this may be achieved by extending

the existing 2D contour detection technique [16] to 3D. It is also necessary to consider

the alignment between texture patches to avoid misalignment artifacts (Fig. 7.4c).

38

Title Tetra Design [sec] Fill [sec] Cut [msec] Size [MB]

Kiwi fruit 4126 29 39 78 9.1

Carrot 2313 38 31 63 7.1

Tree 5012 76 104 125 12.2

Watermelon 2717 17 25 63 9.0

Tube 1089 27 18 31 2.7

Strata 2827 113 77 110 10.4

Cake 2734 34 416 187 14.5

Table 7.1: Statistics of our results. Column describe (from left to right): title, number

of tetrahedron, time for tensor field design, time for automatic filling, time for cross-

sectioning (without subdivision), and total data size of LST model (including texture

exemplars). The size of texture exemplars was 643 throughout.

Soler et al. [37] proposed hierarchical pattern mapping, which considers the coherency

between texture patches on surfaces, but extending their technique to 3D solid appears

to be nontrivial.

39

(a)

(b)

(d)

(c)

Figure 7.2: Results of our method. (a) Watermelon. (b) Volume rendering of a fibrous

tube. (c) Strata. (d) Cake.

40

Figure 7.3: Artifacts around tensor field singularities.

(a) (b) (c)

Figure 7.4: Failure case with a highly structured texture. (a) A curved cylinder filled

with bricks shows (b) blurring and (c) misalignment artifacts.

41

Chapter 8

Conclusions

We proposed in this thesis a novel method for synthesizing large-scale solid textured

models efficiently by extending the approach of lapped textures to 3D solids. We

classified solid textures into several types according to their anisotropy and spatial

variation. Based on this classification, we provided a different user interface for each

texture type to specify the texture orientation and scaling. Our method also handles

nonhomogeneous textures by aligning texture patches to the depth field. Using our

method, various solid textured models, such as kiwi fruits, carrots, and trees, can be

created with little memory and computation.

8.1 Future Work

Our future work obviously includes the preparation of exemplar solid textures, which

is still an unsolved problem especially for organic objects. First, many organic objects,

such as kiwi fruits, contain translucent regions, and the color seen on a cross-section

depends on the materials beneath it. Another problem is that objects such as carrots

that contain fibrous structures can cause anisotropic reflection; the appearance of these

fibers differs depending on the orientation of the cross-section. The existing texture

synthesis methods from 2D exemplars assume consistent color of a given voxel and

cannot handle such cases. A sort of inverse volume rendering may be necessary to

obtain volumetric representation from 2D photographs.

Another possible future direction is to explore more various ways of interacting

with LST models, other than the simple cutting by a stroke [23, 27]. Depending on

the application, the user may want to peel, carve, tear, or smash LST models. In

some cases fracture simulations [30] of LST models may be necessary. It may also

be possible to apply more sophisticated lighting simulations on LST models such as

42

subsurface scattering of heterogeneous materials [3, 31].

43

References

[1] Richard A. Banvard. The visible human project R©image data sets from inception

to completion and beyond. In Proc. of CODATA 2002: Frontiers of Scientific

and Technical Data, 2002.

[2] James F. Blinn. Simulation of wrinkled surfaces. In SIGGRAPH ’78: Proceedings

of the 5th annual conference on Computer graphics and interactive techniques,

pages 286–292, New York, NY, USA, 1978. ACM.

[3] Yanyun Chen, Xin Tong, Jiaping Wang, Stephen Lin, Baining Guo, and Heung-

Yeung Shum. Shell texture functions. ACM Trans. Graph., 23(3):343–353, 2004.

[4] Robert L. Cook. Shade trees. SIGGRAPH Comput. Graph., 18(3):223–231, 1984.

[5] Robert L. Cook and Tony DeRose. Wavelet noise. ACM Trans. Graph., 24(3):803–

811, 2005.

[6] Barbara Cutler, Julie Dorsey, Leonard McMillan, Matthias Müller, and Robert

Jagnow. A procedural approach to authoring solid models. ACM Trans. Graph.,

21(3):302–311, 2002.

[7] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink.

Reflectance and texture of real-world surfaces. ACM Trans. Graph., 18(1):1–34,

1999.

[8] J.M. Dischler, D. Ghazanfarpour, and R. Freydier. Anisotropic solid texture

synthesis using orthogonal 2d views. Computer Graphics Forum, 17(3):87–95,

1998.

[9] Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. Lazy solid texture

synthesis. Computer Graphics Forum, 27(4):1165–1174, 2008.

44

[10] Hongbo Fu, Yichen Wei, Chiew-Lan Tai, and Long Quan. Sketching hairstyles. In

Proc. of Fourth Eurographics Workshop on Sketch-Based Interfaces and Modeling,

2007.

[11] Djamchid Ghazanfarpour and Jean-Michel Dischler. Generation of 3d texture

using multiple 2d models analysis. Computer Graphics Forum, 15(3):311–323,

1996.

[12] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.

In Proc. of SIGGRAPH ’00, pages 229–238, 1995.

[13] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching

interface for 3d freeform design. In Proc. of SIGGRAPH ’99, pages 409–416,

1999.

[14] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological techniques for

solid textures. ACM Trans. Graph., 23(3):329–335, 2004.

[15] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures.

SIGGRAPH Comput. Graph., 23(3):271–280, 1989.

[16] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour

models. International Journal of Computer Vision, 1(4):321–331, 1987.

[17] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani Lischinski,

and Tien-Tsin Wong. Solid texture synthesis from 2d exemplars. ACM Trans.

Graph., 26(3):2, 2007.

[18] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture optimiza-

tion for example-based synthesis. ACM Trans. Graph., 24(3):795–802, 2005.

[19] Laurent Lefebvre and Pierre Poulin. Analysis and synthesis of structural textures.

In Proc. of Graphics Interface ’00, pages 77–86, 2000.

[20] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis. ACM

Trans. Graph., 24(3):777–786, 2005.

[21] Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe. Real-time

fur over arbitrary surfaces. In Proc. of the 2001 symposium on Interactive 3D

graphics, pages 227–232, 2001.

45

[22] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution

3d surface construction algorithm. In Proc. of SIGGRAPH ’87, pages 163–169,

1987.

[23] Michael J. McGuffin, Liviu Tancau, and Ravin Balakrishnan. Using deformations

for browsing volumetric data. In VIS ’03: Proceedings of the 14th IEEE Visu-

alization 2003 (VIS’03), page 53, Washington, DC, USA, 2003. IEEE Computer

Society.

[24] David M. Mount and Sunil Arya. Ann: A library for approximate nearest neighbor

searching, Aug 2006.

[25] Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Fibermesh: de-

signing freeform surfaces with 3d curves. ACM Trans. Graph., 26(3):41, 2007.

[26] Fabrice Neyret. Modeling, animating, and rendering complex scenes using vol-

umetric textures. IEEE Transactions on Visualization and Computer Graphics,

4(1):55–70, 1998.

[27] Shigeru Owada, Ayumi Akaboya, Frank Nielsen, Fusako Kusunoki, and Takeo

Igarashi. Kiru (“cut”, in japanese). In 12th Workshop on Interactive Systems

and Software (WISS 2004), pages 1–4, 2004.

[28] Shigeru Owada, Takahiro Harada, Philipp Holzer, and Takeo Igarashi. Volume

painter: Geometry-guided volume modeling by sketching on the cross-section. In

Proceedings of Eurographics Symposium on Sketcy-Based Interfaces and Modeling,

pages 9–16, 2008.

[29] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. Volumetric

illustration: designing 3d models with internal textures. ACM Trans. Graph.,

23(3):322–328, 2004.

[30] Mark Pauly, Richard Keiser, Bart Adams, Philip Dutré, Markus Gross, and

Leonidas J. Guibas. Meshless animation of fracturing solids. ACM Trans. Graph.,

24(3):957–964, 2005.

[31] Pieter Peers, Karl vom Berge, Wojciech Matusik, Ravi Ramamoorthi, Jason

Lawrence, Szymon Rusinkiewicz, and Philip Dutré. A compact factored represen-

tation of heterogeneous subsurface scattering. ACM Trans. Graph., 25(3):746–

753, 2006.

46

[32] Ken Perlin. An image synthesizer. In Proc. of SIGGRAPH ’85, pages 287–296,

1985.

[33] Nico Pietroni, Miguel A. Otaduy, Bernd Bickel, Fabio Ganovelli, and Markus

Gross. Texturing internal surfaces from a few cross sections. Computer Graphics

Forum, 26(3):637–644, 2007.

[34] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In Proc. of

SIGGRAPH ’00, pages 465–470, 2000.

[35] Xuejie Qin and Yee-Hong Yang. Aura 3d textures. IEEE Transactions on Visu-

alization and Computer Graphics, 13(2):379–389, 2007.

[36] Hang Si. On refinement of constrained delaunay tetrahedralizations. In Proc. of

the 15th International Meshing Roundtable, pages 509–528, 2006.

[37] Cyril Soler, Marie-Paule Cani, and Alexis Angelidis. Hierarchical pattern map-

ping. ACM Trans. Graph., 21(3):673–680, 2002.

[38] Kenshi Takayama, Takashi Ashihara, Takashi Ijiri, Takeo Igarashi, Ryo

Haraguchi, and Kazuo Nakazawa. A sketch-based interface for modeling my-

ocardial fiber orientation that considers the layered structure of the ventricles.

The Journal of Physiological Sciences, 58(7):487–492, 2008.

[39] Kenshi Takayama, Makoto Okabe, Takashi Ijiri, and Takeo Igarashi. Lapped

solid textures: filling a model with anisotropic textures. ACM Trans. Graph.,

27(3):1–9, 2008.

[40] G. M. Treece, R. W. Prager, and A. H. Gee. Regularised marching tetrahedra:

improved iso-surface extraction. Computers and Graphics, 23(4):583–598, 1999.

[41] Greg Turk and James F. O’Brien. Shape transformation using variational implicit

functions. In Proc. of SIGGRAPH ’99, pages 335–342, 1999.

[42] Li-Yi Wei. Texture synthesis by fixed neighborhood searching. PhD thesis, Stanford

University, 2002.

47

