
SKETCH BASED INTERFACE FOR DESIGNING

VOLUMETRIC VECTOR FIELDS

ボリュームデータにおけるベクトル場デザインのための

スケッチインタフェース

by

Kenshi Takayama

高山　健志

A Senior Thesis

卒業論文

Submitted to

the Department of Information Science

the Faculty of Science, the University of Tokyo

on February 6, 2007

in Partial Fulfillment of the Requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Takeo Igarashi 五十嵐　健夫

Associate Professor of Information Science

ABSTRACT

This paper describes a sketch-based interface for designing vector fields filling 3D models.

Vector fields are usually obtained by actual measurements using special equipments or as a

result of simulations. However, some applications require manual design of arbitrary vector

fields, such as the design of animating water and smoke in computer graphics and running

simulation based on some hypotheses in natural science and medicine.

Our system allows the user to specify sample surface vectors by simply drawing strokes on

the surface. The user can also cut the model and draw strokes on the cross-section to specify

sample vectors inside the model. The system then interpolates all these sample vectors to

obtain the final volumetric vector field. We use Laplacian Smoothing algorithm to obtain the

optimized solution quickly. The user is also able to browse the resulting vector field efficiently

by cutting the model.

Our system supports designers to create desired vector fields quickly and easily. We asked

a doctor working on cardiological simulation to try our system for designing muscle fiber

orientation inside of a heart as an application, and found that our interface is very useful for

practical purposes.

論文要旨

本論文では，3次元モデル内を充填するベクトル場を自由に作成するための手書きインタフェー

スを提案する．通常，ベクトル場は高度な計測機器を用いた実測やシミュレーションなどによっ

て得られるものを利用することが多い．しかし，CG表現において水や煙をデザイナの意図にそっ

て動かす場合や，自然科学・医療分野において特定の仮説に基づきシミュレーションを繰り返し

因果関係の傾向を把握する場合などでは，任意のベクトル場を自由に設定することが必要になる．

本システムにおいて，ユーザは 3次元モデルの表面にストロークを描くことで表面のベクトル

場の制約を指定でき，さらにモデルを切断しその断面にストロークを描くことで内部のベクトル

場の制約を指定できる．入力が与えられると，システムはまず表面の制約を使って表面のベクト

ル場を補間し，次いでそのデータとユーザが入力した内部の制約を使って内部のベクトル場を補

間する．補間アルゴリズムとしては，最適解が高速に得られる Laplacian Smoothing法を用いた．

また，ユーザはモデルの断面を生成することによって作成したベクトル場を効率的にブラウズす

ることができる．

本システムを利用することにより，専門家が思い通りのモデルを手早く作成することが可能と

なる．１つの応用例として心臓シミュレーションの専門家にプロトタイプシステムを試用して心

筋の繊維方向を設定する作業を行ってもらい，提案手法が有用であることを確認した．

Acknowledgements

We thank Associate Proffessor Takeo Igarash for his great advice and help. We also

thank Dr. Kazuo Nakazawa and Dr. Ryo Haraguchi for their detailed comments and

advice based on their experience and deep understanding. We appreciate Dr. Takashi

Ashihara’s coorporation on our user study and his valuable comments. This work

could not be achieved without advice and help from members of Igarashi laboratory,

especially Mr. Takashi Ijiri.

Contents

1 Introdunction 1

1.1 Background . 1

1.2 Key Ideas . 1

2 Related Work 3

3 User Interface 5

4 Algorithm 7

4.1 Calculation of Boundary Voxels . 7

4.2 Laplacian Smoothing . 8

4.2.1 Laplacian Matrix on the Surface 9

4.2.2 Laplacian Matrix on the Volume 10

4.3 Setting Constraints . 10

4.3.1 On the Surface . 10

4.3.2 On the Volume . 10

4.4 Adjustment after Smoothing . 11

4.5 Calculation of Cross-Section . 11

4.5.1 Precomputation . 12

4.5.2 Calculation of Voxels on Cross-Section 13

4.5.3 Calculation of Cross-Section Borderlines 14

4.5.4 Calculation of Hidden Surface 15

5 Application Examples 17

6 User Experience 19

7 Conclusion 22

i

8 Limitations and Future Work 23

8.1 Tangential Restriction on Boundary 23

8.2 Control on Vector Magnitude . 23

8.3 Stroke Modification . 23

8.4 Peeling Interface . 24

8.5 Mapping to Deformed Model . 24

References 25

ii

List of Figures

3.1 Overview of our system. 6

4.1 Ray casted in the direction of x. Boundary voxels are drawn with red

and inside voxels with green. Axis is shown in the left bottom (each

red, green and blue line corresponds to x, y and z axis respectively). . 7

4.2 Obtaining cross-section. Borderlines are shown in light blue. 12

4.3 The back-buffer after the precomputation. The model’s silhouette is

drawn in white. 13

4.4 Cross-section stroke on the back-buffer drawn in red. 14

4.5 Voxels on the cross-section rendered in green points. 14

4.6 Boundary voxels on the cross-section (shown in green) and correspond-

ing polygons (shown in red). 15

4.7 The back-buffer after calculation of hidden surface. One side of the

stroke is filled with green. 16

5.1 Velocity fields (left) designed using our system and correspoding par-

ticle animations (right) of storm (top), spiral (middle) and stomach

(bottom). Particels are rendered as yellow points. 18

6.1 Heart fiber model designed by the doctor using our system. 20

6.2 Sample result of heart simulation based on the model in Figure 6.1. . 20

iii

Chapter 1

Introdunction

1.1 Background

Vector fields are usually obtained by actual measurements using special equipments

or as a result of simulations. However, some applications require manual design of

arbitrary vector fields, such as the design of animating water and smoke in computer

graphics and running simulation based on some hypotheses in natural science and

medicine. Few interactive systems are currently available for such purposes, and many

designers are forced to use undesirable methods such as assigning vector value to each

volume by hand which requires a large amount of time and labor, or calculating vector

value automatically by using some approximating functions which is hard to control.

In this paper, we present a novel method for designing volumetric vector fields filling

3D models. Using this method, users can design volumetric vector fields by drawing

strokes with common 2D input device such as mouse or pen. The next section describes

our key ideas and how they were constructed.

1.2 Key Ideas

Probably the simplest method one might think for designing volumetric vector fields

is to specify vector values on some voxels and then interpolate them over the whole 3D

space using common interpolation techniques such as radial basis functions. However,

such method is unfavorable for our purpose of designing volumetric vector fields filling

3D models, because we want to interpolate with consideration of shape of 3D models.

To achieve such shape-considering interpolation, we set an assumption that boundary

voxels should always have tangential vectors to surfaces of 3D models. Thanks to this

1

assumption, we are able to achieve our purpose easily by deviding the problem into

two steps: interpolation on surface and interpolation on volume. This approach is

also beneficial for users because it allows them to easily specify vector values without

creating fair cross-section surface.

One might have a question of whether such an assumption is appropriate or not.

However, we see that there are many kinds of volumetric vector fields in the real

world which have something like ’contour’ shapes (e.g., storms). Although our system

is unsuitable for designing volumetric vector fields which do not have such definite

’contour’ shapes (e.g., explosions), it is very capable of effeiciently designing volumetric

vector fields that run along some 3D shapes.

We describe some related works on design of vector fields in Chapter 2. Chapter 3

presents the overview of our prototype system and its user interface. We describe

our algorithms in Chapter 4. Chapter 5 shows some results and application examples

from our system. Chapter 6 describes a small user test we conducted with a doctor

in the area of cardiology. We finally conclude our method in Chapter 7 and discuss

limitations of our system and possible directions of future work in Chapter 8.

2

Chapter 2

Related Work

Various studies have been done on analysis and visualization of vector fields of various

kinds [1]. On the other hand, studies on design of vector fields are relatively few. Here

we introduce some of the existing methods for designing vector fields.

Salisbury et al. [5] made an efficient tool for designing vector fields on 2D plane

for the purpose of rendering 2D image with orientable textures. Its interface is more

like that of ordinary ’Paint’ applications, and the user can desgin 2D vector fields

using operations such as ’draw’, ’blur’ and ’fill’. It includes ’interpolated fill’: fill an

area between two curves drawn by the user with interpolation of them. This idea of

drawing strokes and interpolating them is very similar to ours.

Praun et al. [4] and Turk [6] used vector fields on surfaces of 3D models to syn-

thesize textures on surfaces. In those papers, they briefly showed simple methods for

designing vector fields on surfaces. They let the user specify vector values on some of

the vertices of the 3D model and assigned interpolated vector values to the remaining

vertices. Praun used Gaussian radial basis functions (distance was defined by Dijk-

stra’s shortest path algorithm on the mesh) for interpolation, while Turk used Mesh

Hierarchy method. Their basic idea of designing vector fields on surfaces is very sim-

ilar to ours. However, we allow the user to specify vector values more intuitively by

using sketch-based interface. In addition, we used Laplacian smoothing method for

interpolation to achieve interactive rate of performance.

Topology of vector field (i.e., locations of singularities and their connectivities)

is often very important for certain applications such as texture synthesis and non-

photorealistic rendering, because it has direct influence on visual appearances. Zhang

et al. [7] showed a novel method for designing vector fields on 2D planes and 3D surfaces

with consideration of topology. Currently our system is yet to support controls of

3

topology, though.

To our knowledge, there are no studies on design of volumetric vector fields. We

propose a method for designing volumetric vector fields using vector fields on surfaces

of 3D models. In the next chapter, we present the overview of our system and its user

interface.

4

Chapter 3

User Interface

Our prototype system is shown in Figure 3.1.

The system first lets the user specify a 3D polygon model to be loaded in ”.obj”

format. The only requirement for this 3D model is that it should have closed surface

so that 3D space can be fairly devided into two parts: inside and outside of the model.

The system then performes several precomputations including:

• calculation of volume boundary

• calculation of Laplacian matrix on the surface

• calculation of Laplacian matrix on the volume

After these precomputations have finished, the user can now design volumetric vector

fields using sketch-based interface.

First, the user can draw strokes on the surface of the model by just dragging over

the surface. Each stroke is rendered as a green line with a gradation of brightness

representing its direction. When a part of the surface where the user wants to draw

strokes is hidden by another part of the surface, the user can take away such interfering

part of the surface by cutting operation. The cutting operation works when the user

draws a stroke that begins outside of the model’s silhouette, runs over it and ends

outside of it. Part of the surface on the right side of this stroke disappears and

the contour line of the cross-section surface appears in light blue. This operation

also allows the user to draw strokes on the cross-section surface in the same way as

drawing strokes on the surface. Part of the surface which is cut off by the above

operation appears again when the user clicks outside of the model’s silhouette.

These are the main operations available for the user’s design. To support design

process, we also provide save/load functions of the input strokes as well as undo/redo

5

Figure 3.1: Overview of our system.

commands.

When the user has drawn satisfactory amount of strokes, the user then lets the

system perform Laplacian smoothing on the surface and on the volume sequentially

to obtain the final result of volumetric vector field.

This result and corresponding volume data can be exported to ”.txt” files, which

will be used from other application softwares.

We implemented our system using Microsoft Visual C++ with MFC platform. We

also used OpenGL to render the scene.

6

Chapter 4

Algorithm

4.1 Calculation of Boundary Voxels

We calculate boundary voxels by ray-casting method. Assume that the model is inside

of the box [0, 1]× [0, 1]× [0, 1]. Rays parallel to the direction of x are casted from every

grid-point on plane x = 0 heading to x = 1. Each ray then computes the position

where it first intersects with the model’s surface and marks the closest grid-point to

this position as being boundary voxel. All the grid-points on the ray are considered as

inside voxels until the ray reaches to the next boundary voxel. Each ray iterates this

process until it reaches to x = 1. We show this process in Figure 4.1.

Figure 4.1: Ray casted in the direction of x. Boundary voxels are drawn with red and

inside voxels with green. Axis is shown in the left bottom (each red, green and blue

line corresponds to x, y and z axis respectively).

7

After processes about the direction of x are done, we then cast rays in the direction

of y and z in the same way. Note that each boundary voxel has information about

position on the model, which is required when setting constraints on the volume and

calculating borderlines of cross-section. This information includes index i of polygon

Pi and two parameters s and t which represent relative position on that polygon as

< position >= (1− s− t)v0 + sv1 + tv2 (4.1)

where v0, v1 and v2 are the positions of the first, second and third vertex of Pi

respectively. We call this set of information as ’PosInfoOnPolygon’ hereafter in this

paper.

4.2 Laplacian Smoothing

Here we give a brief description on Laplacian Smoothing method.

Let X = {x1, · · · , xn} as the set of variables and assume that each variable xi has a

linear equation as

xi =
∑

j∈Ni
wijxj (i = 1, · · · , n) (4.2)

where Ni is subset of {1, · · · , n} − {i} and wij is the corresponding weight. We then

set constraints on some variables as

xki = bi (i = 1, · · · ,m) (4.3)

where ki is the index of variable in the i-th constraint and m is the number of con-

straints. Now the aim of Laplacian Smoothing is to find the values of remaining

unconstrained variables that best fit the equation (4.2) under the constraints of (4.3).

Above equations (4.2) and (4.3) can be rewritten using vectors and matrices as

Lx = 0 (4.4)

Cx = b (4.5)

where x = (x1, · · · , xn)T and b = (b1, · · · , bm)T are vectors, and L = (lij) and

C = (cij) are n× n and m× n matrices respectively defined by

lij =





−1 (i = j)

wij (j ∈ Ni)
0 otherwise

cij =





1 (j = ki)

0 otherwise

8

These two equations (4.4) and (4.5) can be unified into one single equation as

 L

C


x =


 0

b


 (4.6)

This (n+m)×n matrix A =


 L

C


 is not square and this means it is impossible to

find a solution which satisfies all the equations. Instead we obtain an optimized one

by solving another equation

ATAx = AT


 0

b


 (4.7)

Matrix ATA and vector AT


 0

b


 can be extracted as

ATA = (LT CT)


 L

C




= LTL + CTC

AT


 0

b


 = (LT CT)


 0

b




= CTb

Note that the ki-th diagonal element in CTC is 1 and the ki-th element in CTb is bi

(for i = 1, · · · ,m) and all the other elements in CTC and CTb are 0.

In our case, Laplacian matrix L remains unchanged and constraint matrix C varies

during interaction. It is thus smart to precompute the Laplacian matrix and add the

updated constraint matrix to it. Our Laplacian matrix is sparse enough to apply a

specific algorithm for sparse matrix. We used UMFPACK, a library for solving sparse

linear systems, in our implementation. We describe in the following subsection how

we define Laplacian matrix on the two fields: surface and volume.

4.2.1 Laplacian Matrix on the Surface

Vector field on the surface is defined on vertices of the model. We let Ni the set of

indices of vertices around the i-th vertex and define weights as

wij =
1
|Ni|

This means that the value of i-th vertex is simply the average of the vertices around.

9

4.2.2 Laplacian Matrix on the Volume

Vector field on the volume is defined on the voxels. However, since we don’t want to

deal with all the voxels outside of the model, we first index the inside voxels and create

a mapping between this index and the actual position. Each value of voxel should be

the average of values of voxels touching with its six sides: top, bottom, right, left, front

and back. We define Ni and weights similarly to the ones described in the previous

subsection.

4.3 Setting Constraints

Here we describe how we set constraints for Laplacian smoothing.

4.3.1 On the Surface

We first initialize all the vector values of the vertices to 0 before we convert strokes

on the surface into constraints on the surface.

Since each stroke on the surface is represented as sequential segments of PosIn-

foOnPolygon, we explain how a single segment of PosInfoOnPolygon p0 and p1 is

converted to constraints. We first convert p0 and p1 to actual position v0 and v1 by

(4.1) , and obtain the differential vector w = v1−v0. We then simply add this vector

w to all the three vertices that consist the polygon of p0. After we added all the differ-

ential vectors of each segment in the strokes, we finally normalize all the constrained

non-zero vectors on the surface. The method we used here is very rough and possibly

there may be other smarter methods, though.

4.3.2 On the Volume

After we run Laplacian smoothing on the surface to obtain vector field on the surface,

we now set constraints on the volume. As is stated in Section 1.2, we use vector fields

on the surface as well as strokes on the volume as constraints on the volume.

Fisrt we explain how the vector field on the surface is converted to constraints on

the volume. Since each boundary voxel has PosInfoOnPolygon p (see Section 4.1), we

can easily obtain its constrained value by linear interpolation as

< value >= (1− s− t)w0 + sw1 + tw2

where w0, w1 and w2 are the vector values of the first, second and third vertex in the

polygon of p respectively.

10

We now move on to convert strokes on the volume to constraints on the volume.

Since each stroke on the volume is represented as sequential segments of 3D coordi-

nates, we explain how a single segment of 3D coordinates p0 and p1 is converted to

constraints. We take the simplest method that the differential vector w = p1 − p0 is

assigned to the voxel which is closest to p0.

4.4 Adjustment after Smoothing

Because we want vectors on the surface to be tangential to the surface, we remove

their non-tangential components by using normals of the surface after smoothing on

the surface. In addition, we currently do not consider the magnitude of vectors so we

normalize all the vectors both on the surface and on the volume after each smoothing.

4.5 Calculation of Cross-Section

Our purpose of cross-sectioning is only the following two: to draw strokes on the cross-

section and to draw strokes on some part of the surface which is hidden by another

part of the surface. We thus do not calculate remeshed polygons to show the exact

shape of the cross-section. Instead we only show borderlines of cross-section surface

and hide part of polygons which should be cut off. Figure 4.2 shows how the cross-

sectioning works. We implemented these two functions using pixel-based algorithm

where the system processes the back-buffer which is not visible on the screen. Details

are described in the following subsections.

11

Figure 4.2: Obtaining cross-section. Borderlines are shown in light blue.

4.5.1 Precomputation

Assume that the back-buffer is cleared with black. We perform precomputation every

time when the view changes (i.e., rotation and scale). This process includes drawing

silhouette of the model with white and computing coordinates of all the vertices pro-

jected onto the screen. These are required when calculating polygons to be hidden.

Figure 4.3 shows how the back-buffer appears after this process.

12

Figure 4.3: The back-buffer after the precomputation. The model’s silhouette is drawn

in white.

4.5.2 Calculation of Voxels on Cross-Section

After the cross-section stroke is drawn, the system first calculates whether each voxel

is on the cross-section or not. This information is required when visualizing vector field

on the volume and drawing strokes on the volume as well as calculating borderlines of

the cross-section surface. The cross-section stroke is drawn on the back-buffer in red

with a certain width, and then each voxel is projected on the back-buffer to examine

if it is on the stroke. Figure 4.4 shows how the back-buffer appears after this process

and Figure 4.5 shows voxels on the cross-section.

13

Figure 4.4: Cross-section stroke on the back-buffer drawn in red.

Figure 4.5: Voxels on the cross-section rendered in green points.

4.5.3 Calculation of Cross-Section Borderlines

We need to calculate all the intersections between polygons of the model and segments

in the cross-section stroke. However, most of the polygons do not intersect with the

stroke. We thus reduce the wasted calculation by eliminating polygons which are far

from the stroke using following techniques. We first gather bounary voxels from voxels

on the cross-section obtained in the previous subsection, and make a list of polygons

that PosInfoOnPolygon of these boundary voxels belong to. We show such voxels and

polygons in Figure 4.6.

14

Figure 4.6: Boundary voxels on the cross-section (shown in green) and corresponding

polygons (shown in red).

Now we calculate the borderlines of cross-section. First, we assign a flag of ’un-

visited’ to all the polygons of the model. We then perform following process for all

polygons in the list:

1. If the flag is ’visited’, do nothing.

2. Set flag of ’visited’ to this polygon.

3. Calculate its intersection with all the segments of the cross-section stroke.

4. If any intersections are detected, call this function recursively for the three neigh-

boring polygons.

4.5.4 Calculation of Hidden Surface

We calculate hidden part of the surface by examining on which side of the cross-section

stroke is each vertex projected. If a vertex is projected onto the right side of the stroke,

all the polygons that include this vertex are considered as hidden part of the surfcae.

We thus need to distinguish the two areas of silhouette partitioned by the stroke.

This is achieved by filling one side of the stroke with green by using ordinary seed-fill

algorithm. Figure 4.7 shows the back-buffer after this process. We also need to decide

which color (white or green) is on the right side of the stroke. We solved this problem

by using approximation of relation between a certain point in one side and its closest

segment in the stroke.

15

Figure 4.7: The back-buffer after calculation of hidden surface. One side of the stroke

is filled with green.

16

Chapter 5

Application Examples

We designed some sample models of volumetric vector fields using our system and

applied them for particle animations as shown in Figure 5.1. We could design these

models in a few minutes and they provides attractive appearances, which suggests the

effectiveness of our system for particle animations.

17

Figure 5.1: Velocity fields (left) designed using our system and correspoding particle

animations (right) of storm (top), spiral (middle) and stomach (bottom). Particels

are rendered as yellow points.

18

Chapter 6

User Experience

We conducted a small user test with a doctor in the area of cardiology.

In this area, there is an aproach to abnormal cardiac rhythm by using electrical

simulation of heart. Variations of heart fiber orientation represented as volumetric

vector field is required in such simulation to explore direct influences of fiber orien-

tation on stimulus propagation. It has been very hard, however, to obtain such fiber

orientation because there has been no effective tools for dealing with volumetric vector

fields. Therefore, our system has potential power to accelerate research in this area.

We asked the doctor to design a sample model of heart fiber orientation by using

our system. The test was conducted with an ordinary laptop PC (equipped with

2.1 GHz processor and 2.0 GB memory) and a mouse. We provided a commercially

available 3D polygon model of heart for him to design fiber orientation on it. We

first explained the usage of our system, and he was able to get used to it in about

10 minutes. He then started to design a sample model of heart fiber orientation and

finished it in about 8 minutes. The model he designed is shown in Figure 6.1. Figure

6.2 shows the sample result of simulation based on this heart fiber model.

19

Figure 6.1: Heart fiber model designed by the doctor using our system.

Figure 6.2: Sample result of heart simulation based on the model in Figure 6.1.

We then interviewed him and obtained following feedbacks.

First, he evaluated our system as outstanding for his research area, because it

allows users direct design of 3D fiber structures without lowering dimensions to 2D.

He was pleased with his results from our system, as it finely showed typical twisted

structure of heart fiber. He stressed that our system is definitely faster than existing

methods, even if it may take considerable time for calculation as the number of grid

increases.

On the other hand, he noted some unpleasant points in our system and showed

some possible directions of further development if we aim to specialize our system for

design of heart fiber models.

He often got troubles of losing what part of the heart he was looking at while

changing views, because there are little landmarks to guide on the surface of heart.

20

Therefore, he desired a function that enables him to come back to some preset view-

points.

As we had expected, he wanted to modify strokes he had drawn because he often

had troubles that some endpoints of his strokes unexpectedly bounced back. This

taught us a lesson that stroking with mouse is not an easy operation for an unpracticed

user, and remided us the importance of stroke modification. He also said that he could

have designed well if pen and tablet were available.

He then noted that it will be great if he could design heart fiber model with

sample images of actual medical data mapped onto the surface of heart. This will

allow him far more real design by tracing sample images. In general, he pointed out,

tracing operation is important from the medical point of view because it means human

filtering of noisy medical data.

In heart fiber modeling, he noted, smooth interpolation is not always welcome

because there often exists areas where fiber orientation changes discontinuously. He

suggested that allowing users to specify such areas will be useful.

He taught us that there is a place called ’cardiac apex’ on the surface of heart

which looks like a vortex. Since its location is very important in medical sense, he

suggested that it will be great if our system allows the user to control topology of

vector fields on the surface of heart.

Finally he pointed out that our method of visualizing volumetric vector fields by

cross-sectioning is not well suitable for heart fiber model, because structure of actual

heart fiber consists of number of folding layers of heart muscle and many researchers

associate heart fiber models with layers, not with cross-section surfaces. Thus he sug-

gested a ’peeling’ interface, with which a designer can see varing rate by continuously

peeling layers. He also noted that such visualization technique will enhance further

intuitive design as well.

21

Chapter 7

Conclusion

In this paper we presented a novel method for designing volumetric vector fields filling

3D models using sketch-based interface, and described detailed algorithms for imple-

mentation. We took an approach of two-step Laplacian smoothing which achieved an

easy and interactive design. We also conducted a small user test with a doctor in the

area of cardiology and received some valuable feedbacks.

As is pointed out in Chapter 6, our system has some clear improvable points. So

we will discuss the limitations of our system and show possible directions of future

work in the next chapter.

22

Chapter 8

Limitations and Future Work

8.1 Tangential Restriction on Boundary

We used an approach of using vector field on surface as constraints for volumetric

vector field in order to allow user to design easily and intuitively. But this restriction

that volumetric vector field should always have tangential value at the boundary may

cause difficulty in some cases, such as designing volumetric vector field for animations

of particles spreading out of certain region. This problem may be solved by allowing

user to specify areas on surface where should not be considered as constraints for

volumetric vector field.

8.2 Control on Vector Magnitude

Vector magnitude is very important in some applications such as simulations and

animations, which cannot be handled in our current system. There are many possible

interfaces for this purpose including use of color or width of strokes, and we may need

to explore the best choice through corporative prototyping approach.

8.3 Stroke Modification

When a user wants to create a variety of slightly different volumetric vector fields of

one single model, function of stroke modification will greatly reduce the amount of the

user’s labor. The user will be able to design another volumetric vector field in short

time by modifying strokes he or she has once drawn. This function may possibly be

achieved by various methods for curve editing such as Igarashi’s method [2].

23

8.4 Peeling Interface

As is stated in section ??, ’peeling’ interface will be very suitable to deal with models

which have layered structure (i.e., vectors are always tangential to the surface of each

layer). And it will be useful as a tool not only for designing but also for visualizing

volumetric vector field, as the user will be able to intuitively understand continuous

change rates of volumetric vector field depending on depth. To achieve this interaction

is not a trivial problem, but several studies such as [3] might be a good clue for the

solution.

8.5 Mapping to Deformed Model

Mapping volumetric vector field of certain model to another slightly deformed model

would be useful in some cases such as ...??? In our method, strokes on surface are

associated with polygons of the model and they can be finely mapped onto the de-

formed model with no effort. However, strokes inside of the model are not associated

with any positional information of the model, so the problem of mapping them onto

another is not a trivial question.

24

References

[1] Helwig Hauser, Robert S. Laramee, and Helmut Doleisch. State-of-the-art report

2002 in flow visualization.

[2] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-possible shape

manipulation. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, pages 1134–

1141, New York, NY, USA, 2005. ACM Press.

[3] Shigeru Owada, Frank Nielsen, Makoto Okabe, and Takeo Igarashi. Volumetric

illustration: designing 3d models with internal textures. In SIGGRAPH ’04: ACM

SIGGRAPH 2004 Papers, pages 322–328, New York, NY, USA, 2004. ACM Press.

[4] Emil Praun, Adam Finkelstein, and Hugues Hoppe. Lapped textures. In SIG-

GRAPH ’00: Proceedings of the 27th annual conference on Computer graphics

and interactive techniques, pages 465–470, New York, NY, USA, 2000. ACM

Press/Addison-Wesley Publishing Co.

[5] Michael P. Salisbury, Michael T. Wong, John F. Hughes, and David H. Salesin. Ori-

entable textures for image-based pen-and-ink illustration. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics and interactive tech-

niques, pages 401–406, New York, NY, USA, 1997. ACM Press/Addison-Wesley

Publishing Co.

[6] Greg Turk. Texture synthesis on surfaces. In SIGGRAPH ’01: Proceedings of the

28th annual conference on Computer graphics and interactive techniques, pages

347–354, New York, NY, USA, 2001. ACM Press.

[7] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design on

surfaces. ACM Trans. Graph., 25(4):1294–1326, 2006.

25

