
Introduction to
Computer Graphics

Authored by:
Toshiya Hachisuka

Presented by:
Kenshi Takayama

About the slides author

• Toshiya Hachisuka（蜂須賀　恵也）

• Used to teach this class (2015~2020)

• Now Assoc. Prof. @UWaterloo

• https://cs.uwaterloo.ca/~thachisu/

first last

https://cs.uwaterloo.ca/~thachisu/

• Introduction to ray tracing

• Basic ray-object intersection

Today

LuxRender

LuxRender

“Turing Test” - Cornell Box

Simulated Measured

How can we generate realistic images?

Rendering

Light sources

Shapes

Materials

Camera data

Computation

Input data Image

Interdisciplinary Nature
• Computer Science

• Algorithms

• Computational geometry

• Software engineering

• Physics

• Radiometry

• Optics

• Mathematics

• Algebra

• Calculus

• Statistics

• Perception

• Art

Ray Tracing - Concept

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/File:Ray_trace_diagram.svg

Ray Tracing [Appel 1968]

Page

CS348B Lecture 2 Pat Hanrahan, Spring 2008

Ray Tracing in Computer Graphics

Appel 1968 - Ray casting

1. Generate an image by sending one ray per pixel

2. Check for shadows by sending a ray to the light

CS348B Lecture 2 Pat Hanrahan, Spring 2008

Ray Tracing in Computer Graphics

Whitted 1979

Recursive ray tracing (reflection and refraction)

Generate images with shadows using ray tracing

Ray Tracing [Whitted 1979]

Recursive ray tracing for reflections/refractions

Whitted Ray Tracing Today

• Runs realtime on a GPU!

http://alexrodgers.co.uk

Whitted Ray Tracing Today

• Runs realtime on a GPU!

http://alexrodgers.co.uk

You are going to implement something
like this!

Ray Tracing - Pseudocode

for all pixels {

ray = generate_camera_ray(pixel)
for all objects {

hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

}
pixel = shade(first_hit)

}

Ray Tracing - Data Structures

class object {
bool intersect(ray)

}

class ray {
vector origin
vector direction

}

Pinhole Camera

Film = Image

Pinhole

(the image is flipped)

Pinhole Camera

Modern Camera

Pinhole Camera

Film

Pinhole

Camera Coordinate System
up

from

to

Camera Coordinate System

~u · ~v = ~v · ~w = ~w · ~u = 0
||~u|| = ||~v|| = ||~w|| = 1

Orthonormal basis

~e

~v

~u~w

Camera Coordinate System

• Given , , and

~v = ~w ⇥ ~u

Axes

Origin

~u =
~Cup ⇥ ~w

|| ~Cup ⇥ ~w||

~e = ~Cfrom

~Cup ~Cfrom
~Cto

�w =
�Cfrom � �Cto

|| �Cfrom � �Cto||

Up vector?

• Imagine a stick on top your head

• The stick = up vector

• Up vector is not always equal to ~v

~v = up
~v

up

Generating a Camera Ray

~v

~u
~w y = film h

pixel j + 0.5

res y

z = distance to film

(x, y, z)

Pixel location in the camera coordinates

x = film w
pixel i + 0.5

res x

Generating a Camera Ray

• Film size is not equal to image resolution!

Film with 82 resolution Same film with 162 resolution

Generating a Camera Ray

• Pixel location in the world coordinates:

• Camera ray in the world coordinates:

origin = ~e

direction =
origin� pixel

||origin� pixel||

pixel = x�u+ y�v + z �w + �e

Generating a Camera Ray

~e

~v

~u~w

More Realistic Cameras
• “A realistic camera model for computer graphics”

• Ray tracing with actual lens geometry

• Distortion

Full Simulation Thin Lens Approximation

[Kolb et al. 1995]

More Realistic Cameras

• “Efficient Monte Carlo Rendering with Realistic Lenses”

• Polynomial approximation of a lens system

[Hanika et al. 2014]

Ray Tracing - Pseudocode

for all pixels {

ray = generate_camera_ray(pixel)
for all objects {

hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

}
pixel = shade(first_hit)

}

Goal

~o
~d

~p~p = ~o+ t~d

What we want to know
~n

Ray-Sphere Intersection

• Sphere with center and radius~c = (cx, cy, cz) r

||(~p� ~c)||2 = r2

Ray-Sphere Intersection

• Sphere with center and radius~c = (cx, cy, cz) r

~p = ~o+ t~d

||(~p� ~c)||2 = r2

Substitute

Ray-Sphere Intersection

• Sphere with center and radius~c = (cx, cy, cz) r

~p = ~o+ t~d

||(~p� ~c)||2 = r2

Substitute

(~o+ t~d� ~c) · (~o+ t~d� ~c) = r2

||~v||2 = ~v · ~v

Ray-Sphere Intersection

• Sphere with center and radius~c = (cx, cy, cz) r

~p = ~o+ t~d

||(~p� ~c)||2 = r2

Substitute

(~o+ t~d� ~c) · (~o+ t~d� ~c) = r2

~d · ~dt2 + 2~d · (~o� ~c)t+ (~o� ~c) · (~o� ~c)� r2 = 0

Quadratic equation of t Solve for t

||~v||2 = ~v · ~v

Ray-Sphere Intersection

• can have (considering only real numbers)

• 0 solution : no hit point

• 1 solution : hit at the edge

• 2 solutions

• two negatives : hit points are behind

• two positives : hit points are front

• positive and negative : origin is in the sphere

t

Ray-Sphere Intersection

• Two hit points - take the closest

~o
~d

~p0

~p1

Normal Vector

~o
~d

~p~n =
~p� ~c

r

~r ·
�
(~p� ~c) · (~p� ~c)� r2

�
= 2(~p� ~c)

Ray-Implicit Surface Intersection

• Generalized to any implicit surface

f(~p(t)) = 0

Intersection point:

||(~p(t)� ~c)||2 � r2 = 0

Solve

e.g.,

Normal vector:

~n =
~r · f(~p(t))

||~r · f(~p(t))||

Ray-Implicit Surface Intersection

• can be

• Linear: Plane

• Quadratic: Sphere

• Cubic: Bézier (cubic)

• Quartic: Phong tessellation

• ...and anything

f(~p(t)) = 0

Ray-Implicit Surface Intersection

• Quadratic

Ray-Implicit Surface Intersection

• Julia set

“Ray Tracing Quaternion Julia Sets on the GPU” [Crane 2005]

Ray-Implicit Surface Intersection

• Fluid simulation

Ray-Implicit Surface Intersection

• Procedural geometry

www.iquilezles.org

http://www.iquilezles.org

Ray-Implicit Surface Intersection

• Subdivision surfaces

“Direct Ray Tracing of Full-Featured Subdivision Surfaces with Bezier Clipping”

http://jcgt.org/published/0004/01/04/

Triangle Mesh

• Approximate shapes with triangles

“Multiresolution Hierarchies on Unstructured Triangle Meshes” [Kobbelt et al., 1999]

Barycentric Coordinates

• Ratios of areas of the sub-triangles

~c~b

~a
↵ =

� =

� =

AcAa Ab++

AcAa Ab++

AcAa Ab++
Ac

Ab

Aa

Barycentric Coordinates

• Parametric description of a point in a triangle

~p = ↵~a+ �~b+ �~c

0 < ↵ < 1

0 < � < 1

0 < � < 1

↵+ � + � = 1

~a

~b ~c

~p

Barycentric Coordinates

• Interpolate values at the vertices

~na

~nb
~nc

~np

~np = ↵~na + �~nb + �~nc
Normalize it before use

Interpolation

Interpolation

Ray-Triangle Intersection

• Calculate as fast as possible

• Modification of ray-plane intersection

• Direct methods

• Cramer’s rule

• Signed volumes

(t,↵,�, �)

Ray-Triangle Intersection
Cramer’s Rule

~p = ↵~a+ �~b+ �~c

Ray-Triangle Intersection
Cramer’s Rule

~p = ↵~a+ �~b+ �~c~o+ t~d

Ray-Triangle Intersection
Cramer’s Rule

~p = ↵~a+ �~b+ �~c~o+ t~d (1� � � �)~a+ �~b+ �~c

Ray-Triangle Intersection
Cramer’s Rule

~p = ↵~a+ �~b+ �~c~o+ t~d (1� � � �)~a+ �~b+ �~c

ox + tdx = (1� � � �)ax + �bx + �cx
oy + tdy = (1� � � �)ay + �by + �cy
oz + tdz = (1� � � �)az + �bz + �cz

3 equations for 3 unknowns

Ray-Triangle Intersection
Cramer’s Rule

~p = ↵~a+ �~b+ �~c~o+ t~d (1� � � �)~a+ �~b+ �~c
2

4
ax � bx ax � cx dx
ay � by ay � cy dy
az � bz az � cz dz

3

5

2

4
�
�
t

3

5 =

2

4
ax � ox
ay � oy
aZ � oz

3

5

Solve the equation with Cramer’s Rule

det
⇣
~a,~b,~c

⌘
=

⇣
~a⇥~b

⌘
· ~c

Ray-Triangle Intersection
Cramer’s Rule

• Accept the solution only if

tclosest > t > 0

1 > � > 0

1 > � > 0

1 > 1� � � � > 0

tclosest : the smallest positive t values so far

Ray-Triangle Intersection

• There are many different approaches!

• Numerical precision

• Performance

• Storage cost

• SIMD friendliness

• Genetic programming for performance
“Optimizing Ray-Triangle Intersection via Automated Search” [Kensler 2006]

GLSL Sandbox

• Interactive coding environment for WebGL

• You write a program for each pixel in GLSL

• Automatically loop over all the pixels

• Uses programmable shader units on GPUs

http://glslsandbox.com

GLSL implementation

for all pixels {

ray = generate_camera_ray(pixel)
for all objects {

hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

}
pixel = shade(first_hit)

}

GLSL implementation

• Truth is…

• You can find ray tracing on GLSL sandbox

• “Copy & paste” is a good start, but make
sure you understand what’s going on and
describe what you did in your submission

Next Time

for all pixels {

ray = generate_camera_ray(pixel)
for all objects {

hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

}
pixel = shade(first_hit)

}

