Introduction to Computer Graphics

Authored by:
Toshiya Hachisuka

Presented by:
Kenshi Takayama

About the slides author

－Toshiya Hachisuka（蜂須賀 恵也） frrst last
－Used to teach this class（2015～2020）
－Now Assoc．Prof．＠UWaterloo －https：／／cs．uwaterloo．ca／～thachisul

Today

- Introduction to ray tracing
- Basic ray-object intersection

"Turing Test" - Cornell Box

How can we generate realistic images?

Rendering

Input data

Image

Light sources
Shapes
Materials
Camera data

Interdisciplinary Nature

- Computer Science
- Algorithms
- Computational geometry
- Software engineering
- Physics
- Radiometry
- Optics
- Mathematics
- Algebra
- Calculus
- Statistics
- Perception
- Art

Ray Tracing - Concept

https://en.wikipedia.org/wiki/Ray_tracing_(graphics)\#/media/File:Ray_trace_diagram.svg

Ray Tracing [Appel I968]

Generate images with shadows using ray tracing

Ray Tracing [Whitted 1979]

Recursive ray tracing for reflections/refractions

Whitted Ray Tracing Today

- Runs realtime on a GPU!

http://alexrodgers.co.uk

Whitted Ray Tracing Today

- Runs realtime on a GPU!

You are going to implement something like this!
http://alexrodgers.co.uk

Ray Tracing - Pseudocode

for all pixels \{
ray = generate_camera_ray(pixel)
for all objects \{
hit $=$ intersect(ray, object $)$
if "hit" is closer than "first_hit" \{first_hit = hit\}
\}
pixel = shade(first_hit)
\}

Ray Tracing - Data Structures

class object \{
bool intersect(ray)
\}
class ray \{
vector origin
vector direction
\}

Pinhole Camera

(the image is flipped)

Pinhole Camera

Modern Camera

Pinhole Camera

Camera Coordinate System

Camera Coordinate System

Orthonormal basis

$$
\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{u}=0
$$

$$
\|\vec{u}\|=\|\vec{v}\|=\|\vec{w}\|=1
$$

Camera Coordinate System

- Given $\vec{C}_{\mathrm{up}}, \vec{C}_{\mathrm{from}}$, and $\vec{C}_{\text {to }}$

> Axes

$$
\vec{e}=\vec{C}_{\text {from }}
$$

Origin

Up vector?

- Imagine a stick on top your head
- The stick = up vector
- Up vector is not always equal to \vec{v}

Generating a Camera Ray

Pixel location in the camera coordinates

Generating a Camera Ray

- Film size is not equal to image resolution!

Film with 8^{2} resolution

Same film with 16^{2} resolution

Generating a Camera Ray

- Pixel location in the world coordinates:

$$
\text { pixel }=x \vec{u}+y \vec{v}+z \vec{w}+\vec{e}
$$

- Camera ray in the world coordinates:

$$
\begin{aligned}
\text { origin } & =\vec{e} \\
\text { direction } & =\frac{\text { origin }- \text { pixel }}{\| \text { origin }- \text { pixel } \|}
\end{aligned}
$$

Generating a Camera Ray

More Realistic Cameras

[Kolb et al. I995]

- "A realistic camera model for computer graphics"
- Ray tracing with actual lens geometry
- Distortion

Full Simulation

Thin Lens Approximation

More Realistic Cameras

[Hanika et al. 2014]

- "Efficient Monte Carlo Rendering with Realistic Lenses"
- Polynomial approximation of a lens system

Ray Tracing - Pseudocode

for all pixels \{
ray = generate_camera_ray(pixel)
for all objects \{
hit = intersect(ray, object)
if "hit" is closer than "first_hit" \{first_hit = hit\}
\}
pixel = shade(first_hit)
\}

Goal

$$
\vec{p}=\vec{o}+\Delta \vec{d}
$$

Ray-Sphere Intersection

- Sphere with center $\vec{c}=\left(c_{x}, c_{y}, c_{z}\right)$ and radius r

$$
\|(\vec{p}-\vec{c})\|^{2}=r^{2}
$$

Ray-Sphere Intersection

- Sphere with center $\vec{c}=\left(c_{x}, c_{y}, c_{z}\right)$ and radius r

$$
\| \underline{\vec{p}}-\vec{c}) \|^{2}=r^{2}
$$

Substitute $\vec{p}=\vec{o}+t \vec{d}$

Ray-Sphere Intersection

- Sphere with center $\vec{c}=\left(c_{x}, c_{y}, c_{z}\right)$ and radius r

$$
\|(\vec{p}-\vec{c})\|^{2}=r^{2} \quad\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}
$$

Substitute $\vec{p}=\vec{o}+t \vec{d}$

$$
(\vec{o}+t \vec{d}-\vec{c}) \cdot(\vec{o}+t \vec{d}-\vec{c})=r^{2}
$$

Ray-Sphere Intersection

- Sphere with center $\vec{c}=\left(c_{x}, c_{y}, c_{z}\right)$ and radius r

$$
\|(\vec{p}-\vec{c})\|^{2}=r^{2} \quad\|\vec{v}\|^{2}=\vec{v} \cdot \vec{v}
$$

Substitute $\vec{p}=\vec{o}+t \vec{d}$

$$
(\vec{o}+t \vec{d}-\vec{c}) \cdot(\vec{o}+t \vec{d}-\vec{c})=r^{2}
$$

$\vec{d} \cdot \overrightarrow{d t}^{2}+2 \vec{d} \cdot(\vec{o}-\vec{c}) t+(\vec{o}-\vec{c}) \cdot(\vec{o}-\vec{c})-r^{2}=0$
Quadratic equation of $t \longrightarrow$ Solve for t

Ray-Sphere Intersection

- t can have (considering only real numbers)
- 0 solution : no hit point
- I solution : hit at the edge
- 2 solutions
- two negatives : hit points are behind
- two positives : hit points are front
- positive and negative : origin is in the sphere

Ray-Sphere Intersection

- Two hit points - take the closest

Normal Vector

$$
\begin{aligned}
& \vec{o} \text { ? } \\
& \quad \vec{n}=\frac{\vec{p}-\vec{c}}{r}<\overbrace{\vec{p}} \\
& \vec{\nabla} \cdot\left((\vec{p}-\vec{c}) \cdot(\vec{p}-\vec{c})-r^{2}\right)=2(\vec{p}-\vec{c})
\end{aligned}
$$

Ray-Implicit Surface Intersection

- Generalized to any implicit surface

Intersection point:

$$
\begin{aligned}
& \text { Solve } f(\vec{p}(t))=0 \\
& \text { e.g., }\|(\vec{p}(t)-\vec{c})\|^{2}-r^{2}=0
\end{aligned}
$$

Normal vector:

$$
\vec{n}=\frac{\vec{\nabla} \cdot f(\vec{p}(t))}{\|\vec{\nabla} \cdot f(\vec{p}(t))\|}
$$

Ray-Implicit Surface Intersection

- $f(\vec{p}(t))=0$ can be
- Linear: Plane
- Quadratic: Sphere
- Cubic: Bézier (cubic)
- Quartic: Phong tessellation
- ...and anything

Ray-Implicit Surface Intersection

- Quadratic

Ray-Implicit Surface Intersection

- Julia set

"Ray Tracing Quaternion Julia Sets on the GPU" [Crane 2005]

Ray-Implicit Surface Intersection

- Fluid simulation

Ray-Implicit Surface Intersection

- Procedural geometry

Ray-Implicit Surface Intersection

- Subdivision surfaces

"Direct Ray Tracing of Full-Featured Subdivision Surfaces with Bezier Clipping"

Triangle Mesh

- Approximate shapes with triangles

Barycentric Coordinates

- Ratios of areas of the sub-triangles

Barycentric Coordinates

- Parametric description of a point in a triangle

Barycentric Coordinates

- Interpolate values at the vertices

Interpolation

Interpolation

Ray-Triangle Intersection

- Calculate $(t, \alpha, \beta, \gamma)$ as fast as possible
- Modification of ray-plane intersection
- Direct methods
- Cramer's rule
- Signed volumes

Ray-Triangle Intersection Cramer's Rule

$$
\vec{p}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}
$$

Ray-Triangle Intersection Cramer's Rule

$$
\vec{o}+t \vec{d}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}
$$

Ray-Triangle Intersection Cramer's Rule

$$
\vec{o}+t \vec{d}=(1-\beta-\gamma) \vec{a}+\beta \vec{b}+\gamma \vec{c}
$$

Ray-Triangle Intersection Cramer's Rule

$$
\begin{aligned}
\vec{o}+t \vec{d} & =(1-\beta-\gamma) \vec{a}+\beta \vec{b}+\gamma \vec{c} \\
o_{x}+t d_{x} & =(1-\beta-\gamma) a_{x}+\beta b_{x}+\gamma c_{x} \\
o_{y}+t d_{y} & =(1-\beta-\gamma) a_{y}+\beta b_{y}+\gamma c_{y} \\
o_{z}+t d_{z} & =(1-\beta-\gamma) a_{z}+\beta b_{z}+\gamma c_{z}
\end{aligned}
$$

3 equations for 3 unknowns

Ray-Triangle Intersection Cramer's Rule

$$
\begin{gathered}
\vec{o}+t \vec{d}=(1-\beta-\gamma) \vec{a}+\beta \vec{b}+\gamma \vec{c} \\
{\left[\begin{array}{lll}
a_{x}-b_{x} & a_{x}-c_{x} & d_{x} \\
a_{y}-b_{y} & a_{y}-c_{y} & d_{y} \\
a_{z}-b_{z} & a_{z}-c_{z} & d_{z}
\end{array}\right]\left[\begin{array}{c}
\beta \\
\gamma \\
t
\end{array}\right]=\left[\begin{array}{l}
a_{x}-o_{x} \\
a_{y}-o_{y} \\
a_{z}-o_{z}
\end{array}\right]}
\end{gathered}
$$

Solve the equation with Cramer's Rule

$$
\operatorname{det}(\vec{a}, \vec{b}, \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}
$$

Ray-Triangle Intersection Cramer's Rule

- Accept the solution only if

$$
\begin{gathered}
t_{\text {closest }}>t>0 \\
1>\beta>0 \\
1>\gamma>0 \\
1>1-\beta-\gamma>0
\end{gathered}
$$

$t_{\text {closest }}$: the smallest positive t values so far

Ray-Triangle Intersection

- There are many different approaches!
- Numerical precision
- Performance
- Storage cost
- SIMD friendliness
- Genetic programming for performance "Optimizing Ray-Triangle Intersection via Automated Search" [Kensler 2006]

GLSL Sandbox

- Interactive coding environment for WebGL
- You write a program for each pixel in GLSL
- Automatically loop over all the pixels
- Uses programmable shader units on GPUs
http://glslsandbox.com

GLSL implementation

for all pixels \{
ray = generate_camera_ray(pixel)
for all objects \{
hit = intersect(ray, object)
if "hit" is closer than "first_hit" \{first_hit = hit\}
\}
pixel = shade(first_hit)

GLSL implementation

- Truth is...
- You can find ray tracing on GLSL sandbox
- "Copy \& paste" is a good start, but make sure you understand what's going on and describe what you did in your submission

Next Time

for all pixels \{
ray = generate_camera_ray(pixel)
for all objects \{
hit $=$ intersect(ray, object $)$
if "hit" is closer than "first_hit" \{first_hit = hit\}
\}
pixel = shade(first_hit)
\}

