Introduction to
Computer Graphics

Authored by:
Toshiya Hachisuka

Presented by:
Kenshi Takayama

About the slides author

[

e Toshiya Hachisuka (I§7BE Ei3)

first last

® Used to teach this class (2015~2020)

® Now Assoc. Prof. @UWaterloo
W UNIVERSITY OF .
& WATERLOO ® https://cs.uwaterloo.ca/~thachisu/

https://cs.uwaterloo.ca/~thachisu/

Today

® |ntroduction to ray tracing

® Basic ray-object intersection

LuxRender

LuxRende'r

“Turing Test” - Cornell Box

Simulated Measured

How can we generate realistic images!?

Input data

Light sources
SEDIER
Materials

Camera data

Rendering

Interdisciplinary Nature

® Computer Science
® Algorithms
® Computational geometry
® Software engineering
® Physics
® Radiometry
® Optics
® Mathematics
® Algebra
® Calculus
® Statistics
® Perception
® Art

Ray Tracing - Concept

Light Source

View Ray

Scene Object

https://en.wikipedia.org/wiki/Ray tracing (graphics)#/media/File:Ray trace diagram.svg

Ray Tracing [Appel 1968]

Generate images with shadows using ray tracing

Ray Tracing [Whitted 1979]

Recursive ray tracing for reflections/refractions

Whitted Ray Tracing Today

® Runs realtime on a GPU!

http://alexrodgers.co.uk

Whitted Ray ITracing Today

® Runs realtime on a GPU!

You are going to implement something

p like this! /\
: '/,‘\\o ,9\\. mﬂ n |
AN
.

http://alexrodgers.co.uk

Ray Tracing - Pseudocode

for all pixels {
ray = generate_camera_ray(pixel)
for all objects {
hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

;
pixel = shade(first_hit)

Ray Tracing - Data Structures

class object {
bool intersect(ray)

J

class ray {
vector origin

vector direction

Pinhole Camera

N
V

Pinhole

Film = Image

(the image is flipped)

Pinhole Camera

Modern Camera

bl V=
. e

D KenRockwell.com

- -

Pinhole Camera

& Pinhole

Film

Camera Coordinate System
up

A

from

Camera Coordinate System

Camera Coordinate System

® Given C_;up, 6from’and 5t0

—

0 — C_ifrom — Cj?O
HCfrom — CtOH
. Cup &7l Axes
{]
|Cup x W],
U= XU
€ = —)from Origin

Up vector?

® |magine a stick on top your head

® The stick = up vector

e Up vector is not always equal to U

Generating a Camera Ray

Pwd
(

A

(

L |

Y5

&

)

Pixe

pixel1 4+ 0.5

res_XxX

r = film_w

o - ixel_j + 0.5
by = film_h 2 il

res_y

z = distance to film

location in the camera coordinates

Generating a Camera Ray

® Film size is not equal to image resolution!

Film with 82 reso

ution

Same fi

m with |62 resolution

Generating a Camera Ray

® Pixel location in the world coordinates:

pixel =xu+yv+ zw + €

® Camera ray in the world coordinates:

origin = €
origin — pixel

direction =

|origin — pixel|

Generating a Camera Ray

More Realistic Cameras

[Kolb et al. 1995]
® “A realistic camera model for computer graphics”

® Ray tracing with actual lens geometry

® Distortion

Full Simulation Thin Lens Approximation

More Realistic Cameras

[Hanika et al. 2014]

“Efficient Monte Carlo Rendering with Realistic Lenses”

° Polynomlal approximation of a lens system

w Taylor 2427 spp ¢

Ray Tracing - Pseudocode

for all pixels {
ray = generate_camera_ray(pixel)
for all objects {
hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

;
pixel = shade(first_hit)

Goal

p=0 -+t

What we want to know

n

Ray-Sphere Intersection

® Sphere with center ¢ = (Cx, Cy s Cz)and radius 7

(7= O)I° =7

Ray-Sphere Intersection

® Sphere with center ¢ = (Cx, Cy s Cz)and radius 7

(- o) =

Substitute p = 0 + td

Ray-Sphere Intersection

® Sphere with center ¢ = (Cx, Cy s Cz)and radius 7

|F-oF =r* |W*=0-0

Substitute p = 0 + td

(G+td—@) - (6+td— &) = r?

Ray-Sphere Intersection

® Sphere with center ¢ = (Cx, Cy s Cz)and radius 7
|F-ol =r" |Jof =07
Substitute p = 0 + td
(G+td—@) - (6+td— &) = r?

d-dt? +2d-(G—t+@—28)-(6—&)—r>=0

Quadratic equation of { —— Solve for ¢

Ray-Sphere Intersection

® { can have (considering only real numbers)

® 0 solution : no hit point

® | solution : hit at the edge

® 2 solutions
® two negatives : hit points are behind
® two positives : hit points are front

® positive and negative : origin is in the sphere

Ray-Sphere Intersection

® Two hit points - take the closest

e d
0O

Normal Vector

Ray-Implicit Surface Intersection

® Generalized to any implicit surface

Intersection point:

Solve f(p(t)) =0
e, ||(p(t) = O)|° —r* =0

Normal vector:

n =

V- f((1)
V- f

|V - f(()]]

Ray-Implicit Surface Intersection

o F(f(t)) = 0can be

® linear:Plane
® Quadratic: Sphere
® Cubic: Bezier (cubic)

® Quartic: Phong tessellation

® _..and anything

Ray-Implicit Surface Intersection

® (Quadratic

Ray-Implicit Surface Intersection

® |ulia set

“Ray Tracing Quaternion Julia Sets on the GPU” [Crane 2005]

Ray-Implicit Surface Intersection

® Fluid simulation

Ray-Implicit Surface Intersection

® Procedural geometry

~ www.iquilezles.org

v

http://www.iquilezles.org

Ray-Implicit Surface Intersection

e Subdivision surfaces

http://jcgt.org/published/0004/01/04/

Triangle Mesh

® Approximate shapes with triangles

“Multiresolution Hierarchies on Unstructured Triangle Meshes” [Kobbelt et al., 1999]

Barycentric Coordinates

® Ratios of areas of the sub-triangles

—

a A
YTATATA

B =2t
A, A+ A,

LA
C VT ATATA

Barycentric Coordinates

® Parametric description of a point in a triangle

p=ad+ Bb+~¢

O<a<l
0<p <1
0<y <1

Barycentric Coordinates

® |nterpolate values at the vertices

Ny = Qg + BNy + Yie

Normalize it before use

S|
S

Interpolation

Interpolation

Ray- Triangle Intersection

e Calculate (¢, a, 3,) as fast as possible

® Moadification of ray-plane intersection

® Direct methods

® Cramer’s rule

® Signed volumes

Ray- Triangle Intersection
Cramer’s Rule

—

P = ad+ Bb+~¢

Ray- Triangle Intersection
Cramer’s Rule

—
—

0+ td = ad+ Bb+~¢

Ray- Triangle Intersection
Cramer’s Rule

G+td=(1—B—~)d+ Bb+~¢C

Ray- Triangle Intersection
Cramer’s Rule

G+td=(1—B—~)d+ Bb+~¢C

0, +tdy = (1 — 8 —)az + Bby + Yeu
o, +td, = (1 — B —y)ay, + Bb, + ¢,
0, +td, =(1—B—")a, + Bb, + e,

3 equations for 3 unknowns

Ray- Triangle Intersection

Cramer’s Rule

G+td=(1—B—~)d+ Bb+~¢C

aJa:_ba;
ay — by
az_bz

Solve the equation with Cramer’s Rule

(ax@.a

Uy — Cyg
Uy — Cy
Ay — Cy

det (a, b 5)

a

Uy — Og
Uy — Oy
Z_Oz_

Ray- Triangle Intersection
Cramer’s Rule

® Accept the solution only if

telosest = T > 0

1>3>0
I >~v>0
1>1—-8—~v>0

tclosest : the smallest positive t values so far

Ray- Triangle Intersection

® There are many different approaches!
® Numerical precision
® Performance

® Storage cost

® SIMD friendliness

® Genetic programming for performance
“Optimizing Ray-Triangle Intersection via Automated Search” [Kensler 2006]

GLSL Sandbox

® |nteractive coding environment for WebGL

® You write a program for eac

® Automatically loop over al

n pixel in GLSL

the pixels

® Uses programmable shader units on GPUs

http://glslsandbox.com

GLSL implementation

ray = generate_camera_ray(pixel)
for all objects {
hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

;
pixel = shade(first_hit)

GLSL implementation

® Truthis...

® You can find ray tracing on GLSL sandbox

® “Copy & paste” is a good start, but make
sure you understand what’s going on and
describe what you did in your submission

Next Time

for all pixels {
ray = generate_camera_ray(pixel)
for all objects {
hit = intersect(ray, object)
if “hit” is closer than “first_hit” {first_hit = hit}

;
pixel = shade(first_hit)

