
Introduction to Computer Graphics

– Animation (3) –

May 27, 2021
Kenshi Takayama

Fluid simulation

2

3
Position Based Fluids [Macklin SIGGRAPH13]
Detail-Preserving Paint Modeling for 3D Brushes [Chu NPAR10]

https://www.youtube.com/watch?v=KoEbwZq2ErU https://www.youtube.com/watch?v=6WZZARzpckw

https://www.youtube.com/watch?v=WFwi0qLV8hQ

https://www.youtube.com/watch?v=KoEbwZq2ErU
https://www.youtube.com/watch?v=6WZZARzpckw
https://www.youtube.com/watch?v=WFwi0qLV8hQ

Two different approaches
Eulerian
• Store velocity etc. on lattice grid

• e.g. density, temperature

• Straightforward to compute gradients

• Suitable for offline applications
• Also good for real-time

Lagrangian
• Store data on particles which move according to velocity

• Needs some hacks for computing gradients etc

• Suitable for real-time applications
4

Stable Fluids [Stam, SIGGRAPH 99]
• Unconditionally stable regardless of timestep
è suitable for games

• Easy exposition for game developers
• Real-Time Fluid Dynamics for Games (GDC 2003)

• https://www.dgp.toronto.edu/public_user/stam/reality/Resear
ch/pdf/GDC03.pdf

• Small sample code (< 500 lines)
• http://www.dgp.toronto.edu/people/stam/reality/Research/zi

p/CDROM_GDC03.zip

• Goal: Understand this paper!
5

https://www.dgp.toronto.edu/public_user/stam/reality/Research/pdf/GDC03.pdf
http://www.dgp.toronto.edu/people/stam/reality/Research/zip/CDROM_GDC03.zip

Advection of physical quantity
by stationary velocity field
• Type of quantity:

temperature, density, etc

• Method:
• Explicit method è unstable
• Semi-Lagrangian method è stable

6

Velocity
field

Explicit method [Foster 96]
• Given: stationary velocity field over 2D domain

𝐮:ℝ! ↦ ℝ!

• For some quanitity 𝑞": ℝ! ↦ ℝ at time 𝑡, compute its next state
𝑞"#$ at time 𝑡 + ℎ using explicit method:

𝑞"#$ 𝐱 = 𝑞" 𝐱 − ℎ 𝐮 𝐱 ⋅ 𝛁𝑞" 𝐱

• Amount of change is in proportion to timestep ℎ
è Too large ℎ will lead to explosion L

7Realistic animation of liquids [Foster GMIP96]

𝐮(𝐱)

𝛁𝑞!(𝐱)
𝐱

Careful with the sign!

Semi-Lagrangian method [Stam 99]
• Imagine a particle that would arrive at

position 𝐱 at time 𝑡 + ℎ
• Obtain the particle’s position .𝐱 at time 𝑡, and

copy the current quantity sampled there:

.𝐱 = trace 𝐮, 𝐱, −ℎ
𝑞"#$ 𝐱 = 𝑞" .𝐱

• No need to actually generate particles
• Method for tracing: linear prediction, Runge-Kutta, etc

• Stable regardless of timestep!
• Because we obtain 𝑞!"# by resampling 𝑞!

8

Dynamic change of velocity field
• Advect velocity itself by velocity field (using semi-Lagrangian),

just like any other quantities

• BUT, the result is not realistic at all!

9

There should be more swirls!

Key to realism: incompressibility condition
𝛁 ⋅ 𝐮(𝐱) = 0 ∀𝐱

• “Divergence is zero everywhere”
• For each cell, the sum of incoming & outgoing amount is zero
• Can be interpreted as mass conservation

• Vector field 𝐰 obtained by advecting velocity doesn’t satisfy the
incompressibility condition!

• So, we compute a scalar field 𝑞 such that
𝛁 ⋅ 𝐰 − 𝛁𝑞 = 0

and obtain new velocity field 𝐮 = 𝐰− 𝛁𝑞 satisfying the incomp. condition
10

Helmholtz decomposition

Poisson equation
𝛁 ⋅ 𝐰 − 𝛁𝑞 = 0

⟺
Δ 𝑞 = 𝛁 ⋅ 𝐰

• 𝑞 minimizes the following energy (thus called projection)

𝐸 𝑞 = $
!

𝐰− 𝛁𝑞 "

• Equation expressed using a large sparse matrix

• Solution methods:
• Gauss-Seidel è easy to implement, but slow (used by the sample code)
• (Preconditioned) Conjugate Gradient è fast
• Multigrid è very fast, difficult to implement (maybe?)

11

Δ = 𝛁 ⋅ 𝛁

Diffusion
• Phenomenon of distribution tending toward smoother state

• When applied to velocity, we get viscous fluid

12

Diffusion equation
𝜕𝑞
𝜕𝑡

= 𝜈 Δ𝑞

• Explicit method
𝑞"#$ 𝐱 = 𝑞" 𝐱 + ℎ 𝜈 Δ𝑞"(𝐱)

• Amount of change is in proportion to timestep ℎ è unstable

• Implicit method
𝑞" 𝐱 = 𝑞"#$ 𝐱 − ℎ 𝜈 Δ𝑞"#$(𝐱)

• Stable regardless of timestep ℎ
• Equation expressed using a large sparse matrix (similar to Poisson eq.) 13

𝜈 : coefficient

Incompressible Navier-Stokes equation
𝜕𝐮
𝜕𝑡

= − 𝐮 ⋅ 𝛁 𝐮 −
1
𝜌
𝛁𝑝 + 𝜈Δ𝐮 + 𝐟

• Not to be confused:
𝐮 ⋅ 𝛁 = 𝑢!

"
"#
+ 𝑢$

"
"%

is a differential operator, unlike divergence 𝛁 ⋅ 𝐮 !

• x component:
𝜕𝑢!
𝜕𝑡 = − 𝑢!

𝜕𝑢!
𝜕𝑥 + 𝑢$

𝜕𝑢!
𝜕𝑦 −

1
𝜌
𝜕𝑝
𝜕𝑥 + 𝜈

𝜕&𝑢!
𝜕𝑥& +

𝜕&𝑢!
𝜕𝑦& + 𝑓!

• Scalar field 𝑞 𝐱 = 𝑝 𝐱 /𝜌 obtained by projection corresponds to pressure
• Acceleration emerging from high pressure region to low pressure region

14

s.t. 𝛁 ⋅ 𝐮 = 0
Advection Pressure Viscosity Ext.

force

Simulation pipeline
• Velocity update (vel_step)

• Add external force
• Diffuse
• Project
• Advect
• Project

• Smoke density update (dens_step)
• Add external source
• Diffusion
• Advection

15

Equation for velocity 𝐮(𝐱)

𝜕𝐮
𝜕𝑡

= − 𝐮 ⋅ 𝛁 𝐮 −
1
𝜌
𝛁𝑝 + 𝜈Δ𝐮 + 𝐟

Equation for density 𝑑(𝐱)

𝜕𝑑
𝜕𝑡

= − 𝐮 ⋅ 𝛁 𝑑 + 𝜈Δ𝑑 + 𝑠

Do projection before advection & difffusion!

Boundary conditions

• For more complex cases, need more advanced techniques
• E.g., curved boundaries, sheets thinner than grid spacing, etc

16

Zero velocity component
normal to boundary

Make left/right (top/bottom)
boundaries continuous Keep adding constant amount

Advanced topics

17

Representing liquid surfaces using level set
• Introduce scalar field 𝜙(𝐱) representing

distance to the liquid surface
• 𝜙(𝐱) < 0 means liquid, 𝜙(𝐱) > 0 means air
• Initialize properly

• Advect 𝜙 𝐱 by velocity

• During projection, set boundary condition
𝑝 𝐱 = 0 at surface 𝜙 𝐱 = 0

18

https://www.youtube.com/watch?v=Ss89OpQ_u54
http://code.google.com/p/levelset2d/

Practical animation of liquids [Foster SIGGRAPH01]

https://www.youtube.com/watch?v=Ss89OpQ_u54
http://code.google.com/p/levelset2d/

Various advection algorithms

19
https://www.youtube.com/watch?v=UYu8JgbbHpE

http://code.google.com/p/2dsmoke/

• Semi-Lagrangian
• Upwind
• MacCormack
• WENO5
• QUICK

https://en.wikipedia.org/wiki/MacCormack_method
https://en.wikipedia.org/wiki/Upwind_scheme

https://www.youtube.com/watch?v=UYu8JgbbHpE
http://code.google.com/p/2dsmoke/
https://en.wikipedia.org/wiki/MacCormack_method
https://en.wikipedia.org/wiki/Upwind_scheme

Smoothed Particle Hydrodynamics
• Representative of Lagrangian methods

• Move particles with mass according to velocity

• Derive continuous fields from discrete particles
using smoothing kernel
• 𝑊 𝑟 = '()

*+,-!
ℎ& − 𝑟& '

• Density: 𝜌 𝐱 = ∑.𝑚.𝑊 𝐱− 𝐱.

• Velocity: 𝐮 𝐱 = ∑.
/"

0 𝐱"
𝐮. 𝑊 𝐱− 𝐱.

• 1st & 2nd order derivatives can be obtained by 𝛁𝑊 & Δ𝑊
20

Particle-Based Fluid Simulation for Interactive Applications [Muller SCA03]
https://slideplayer.com/slide/4790539/

https://slideplayer.com/slide/4790539/

Smoothed Particle Hydrodynamics
• Force acting on particle: − $

+ 𝐱!
𝛁𝑝 𝐱, + 𝜈Δ𝐮 𝐱, + 𝐟

• By the ideal gas law 𝑝𝑉 = 𝑁𝑅𝑇, pressure & density are proportional:

𝑝 𝐱 = 𝑘 𝜌 𝐱

è No need to solve Poission equation!

21https://www.youtube.com/watch?v=M8WPlNWAWPY

Pressure Viscosity Ext.
force

Particle-Based Fluid Simulation for Interactive Applications [Muller SCA03]
https://slideplayer.com/slide/4790539/

https://www.youtube.com/watch?v=M8WPlNWAWPY
https://slideplayer.com/slide/4790539/

Hybrid of Eularian & Lagrangian

• PIC (Particle In Cell) and FLIP (FLuid Implicit Particle)

22Animating sand as a fluid [Zhu,Bridson,SIGGRAPH05]

Eulerian

Numerical dissipation L

Accurate J

Lagrangian

No numerical dissipation J

Inaccurate L

Advection

Projection

Transfer Project Interpolate Advect

Approximation of water surface
by height field

• WebGL code
• http://madebyevan.com/webgl-water/
• http://dblsai.github.io/WebGL-Fluid/

23

initialize u[i,j] as you like
set v[i,j] = 0
loop

v[i,j] +=(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 – u[i,j]
v[i,j] *= 0.99
u[i,j] += v[i,j]

endloop
Real Time Fluids in Games (by Matthias Müller)
https://slideplayer.com/slide/4790539/

http://madebyevan.com/webgl-water/
http://dblsai.github.io/WebGL-Fluid/
https://slideplayer.com/slide/4790539/

Pointers
• JavaScript code

• http://www.ibiblio.org/e-notes/webgl/gpu/fluid.htm
• https://nerget.com/fluidSim/
• http://dev.miaumiau.cat/sph/
• http://p.brm.sk/fluid/

• C++ code
• http://code.google.com/p/flip3d/
• http://code.google.com/p/levelset2d/
• http://code.google.com/p/smoke3d/
• http://code.google.com/p/2dsmoke/
• http://www.cs.ubc.ca/~rbridson/download/simple_flip2d.tar.gz

• Shiokaze Framework: https://shiokaze.ryichando.graphics/
• Books

• Fluid Simulation for Computer Graphics, by R. Bridson, 2008
• The Art of Fluid Animation, by Jos Stam, 2015

24

http://www.ibiblio.org/e-notes/webgl/gpu/fluid.htm
https://nerget.com/fluidSim/
http://dev.miaumiau.cat/sph/
http://p.brm.sk/fluid/
http://code.google.com/p/flip3d/
http://code.google.com/p/levelset2d/
http://code.google.com/p/smoke3d/
http://code.google.com/p/2dsmoke/
http://www.cs.ubc.ca/~rbridson/download/simple_flip2d.tar.gz
https://shiokaze.ryichando.graphics/

