Introduction to Computer Graphics

— Animation (2) —

May 20, 2021
Kenshi Takayama



Physics-based animation
of deforming objects

» Classic: faithful simulation of physical phenomena
* Mass-spring system
* Finite Element Method (FEM)



Simple example: single mass & spring in 1D

« Mass m, position x, spring coefficient k,

rest length [, gravity g : ,

: : CT X
' Equation of motion ;mF =—k(x—-D+my
_____________________________________ t

= fint(x) + fext

* foxt . External force (gravity, collision, user interaction)
* fint(x): Internal force (pulling the system back to original)

x(t) I P

 Spring’s internal energy (potential):
E(x) =

=~

E (X—l)z

* Internal force is the opposite of potential gradient:

fine() = === —k(x = D |



Mass-spring system in 3D

« N masses: i-th mass m;, position x; € R?
* M springs: j-th spring e; = (iy, i,)
- Coefficient k;, rest length [;

« System’s potential energy for a state x = (x4, ..., xy) € R3¥:

k; 2
E(x) = 2 ?](“Xi1 — xiz” — lj)
ej:(ipiz)

 Equation of motion:
d*x

MW = —VE(X) +fext

« M € R3V*3N - Diagonal matrix made of m; (mass matrix) ,



Continuous elastic model in 2D
(Finite Element Method)

N vertices: i-th position x; € R?
M triangles: j-th triangle t; = (iy, i3, i3)

Undeformed state: X = (X4, ..., Xy) € R?Y
Deformed state:  x = (xq, ..., xy) € R?N

Deformation gradient: -1 A F.

o F K K
F;(x) = N I 1 B R Linear transformation
S > which maps edges
 System’s potential: ,
E(x) := z - ”Fj x)'F;(x) — I“T Green's strain energy

tj=(i1»i27i3)
 Equation of motion: 24

MF = —VE (X) + feXt

« M € R?N*2N : Diagonal matrix made of vertices’ Voronoi areas



Computing dynamics

* Problem: Given initial value of position x(t) and velocity v(t) = % as
X(O) — XO and V(O) — VO ,

compute x(t) and v(t) for t > 0. (Initial Value Problem)

 Simple case of single mass & spring:

X k=D +
m——s = —k(x — m
dt? g
=» analytic solution exists (sine curve) A
As As A
* General problems don't have analytic solution %
= From state (x,,, v,,) at time t, compute next state Ag
(Xn+1, Vns1) at time t + h. (time integration)
>

* h:time step



————————————————————————————————————————————————————————————————————————

' Discretize acceleration using finite difference:

Explicit method M)
Forward Euler Symplectlc Euler
Xp41 =Xp + hvy, | Xn41 = X, + hvn+11
Vs1 = Vo + AMT! (fine (%) + fexe) | Vi1 =Vp + AMT (_f_l_r_l_t__(_???_l)_i_f?_x_t)___
f=-k(x(t)-1,)
* Pro: easy to compute N —
() I! Ixr’f} g
 Con: overshooting /
« With larger time steps, mass can easily Ax =K o) l,)
go beyond the initial amplitude < e
=» System energy explodes over time '_T | CI} >
0 x(t+h) / 0 x(1)




Implicit method: backward Euler

Xp+1 = Xp + AV
 Vpe1 =V T hM™ (fint(xn+1) + fext) 5

* Represent v, ., using unknown position x,,, 1
* Pros: can avoid overshoot

e Cons:
« Expensive to compute (i.e. solve equation)
* Numerical damping (energy dissipation)

https://single-mass-spring.glitch.me/



https://single-mass-spring.glitch.me/

Inside of backward Euler

Xn+1 = Xp + h Vn+1 Vit1 =Vp + R M~ (Fint(Xng1) + fexe)

=X, +hv, + hZM_l(fint(Xn+1) + fext)
el = Xn + h Vn + hZM_l(_VE(Xn+1) + fext)

' Denote unknown x,,,; asy |

_____________________________________________

h°VE(y) + My —M(x,, + hv,) — h?fo =0

F(y)
* Reduce to root-finding problem of function F: R3" +~ R3V
= Newton’'s method: _1
(i+1) v _ (4F (0
yrrr ey = (@) F(y*")

. . —1 .
— y(l) _ (th.[E(y(l)) + M) F(y(l))
2nd derivative of potential E (Hessian matrix)

» Coefficient matrix of large linear system changes at every iteration
=» high computational cost!



Recent paper: Energy conservation through
combination of forward Euler & backward Euler

Implicit Midpoint

—————————————————————————————————————————

Vip1 = Vo + h MU (TRt Backward Euler Proposed method
X explodes hped ceable damping

4

4

® Energy increase @ Energy decrease © Energy conservation

Stabilizing Integrators for Real-Time Physics [Diney,Liu,Kavan, TOG18]

10




Mass spring vs. Finite elements

 Both define potential as sum of deformations of small elements
e Differ only in the measure of deformations

Mass spring Finite element

Prostate Brachytherapy

Flexible - Bevel Tip Needle

Physical accuracy A
Compute/impl cost @, JAN

Fast Simulation of Mass-Spring Systems [Liu et al., SIGGRAPH Asia 2013]
Interactive simulation of surgical needle insertion and steering [Chentanez et al., SIGGRAPH 2009]



Physics-based animation
of deforming objects

» CG-specific: plausible & robust, but not faithful simulation
« Shape Matching (Position-Based Dynamics)



Shape Matching: physics animation method tailored for CG

* Meshless deformations based on shape matching
[Muller, Heidelberger, Techner, Gross, SIGGRAPH 2005]

* Features
« Unconditionally stable

* Goes back to rest state no matter what

 Easy to compute/implement

 Caveat: cannot be interpreted
as real physics

=>» Perfectly suitable for CG

13



Case of single mass & spring (no ext. force)

Symplectic Euler Shape Matching
hk a
vn+1<—vn+7(l—xn) vn+1(_vn+ﬁ(l_xn)
Xn+1 < Xp + R Vpiq Xn+1 € Xn T h Vpyq

l x(ét)

* 0 < a < 1is “stiffness” parameter unique to PBD
 a = 0 =» No update of velocity (spring is infinitely soft)
* @ =1 =» Spring is infinitely stiff
=» Energy never explodes in any case ©

* Note: Unit of a/h is (time)! = a has no physical meaning!
« Reason why PBD is called non physics-based but geometry-based

14



Case of general deforming shape (no ext. force)

@i@j} Explicit Euler Shape Matching
_hM-! a
s, Vn1 Vo — RMUVE(G) Va1 © Vo + 7 (8(%,) — Xp)
L Xp41 < XpHh vy Xn41 <Xy, +hv, 4
* Goal position g . g8(X,) e o
* Rest shape rigidly transformed 1 oo > /
such that it best matches the . T
current deformed state \ e %
« (SVD of moment matrix) ¢ ¢ \.,/’ !

» Called "Shape Matching”

* One technique within the PBD framework
« Connectivity info (spring/mesh) not needed =» meshless



Shape Matching per local regions

Represent shape as overlapped local regions
@

St

* To allow more complex deformations

Size of local region determines stiffness

FastLSM; fast lattice shape matching for robust real-time deformation [Rivers SIGGRAPHO07] 1o



Shape Matching per (overlapping) local region

* More complex deformations

 Acceleration techniques

«— Hair particles

{9/ . .
l‘:— Chain regions
o

Local regions from voxel lattice Local regions from octree Animating hair using

. . . . . 1D chain structure
FastLSM; fast lattice shape matching for robust real-time deformation [Rivers SIGGRAPHO07]

Fast adaptive shape matching deformations [Steinemann SCAQ8]
Chain Shape Matching for Simulating Complex Hairstyles [Rungjiratananon CGF10]

17



Examples of applying this idea

Soft objects whose deformation

Self-actuated soft objects behavior can be specified via examples

SCA 2012

Real-Time Example-Based

ProcDef: Local-to-global Deformation for Elastic Deformation
Skeleton-free Character Animation

Yuki Koyama' The University of Tokyo
Kenshi Takayama?: 2 2ETH Ziirich

Nobuyuki Umetani' 3JST ERATO

' ! ‘ ‘ Takeo Igarashi’- 3

ProcDef; local-to-global deformation for skeleton-free character animation [ljiri PG09]
Real-Time Example-Based Elastic Deformation [Koyama SCA12]

Takashi Ijiri'%, Kenshi Takayama®. Hideo Yokota'. Takeo lgarashi®?
1Riken, 2 The University of Tokyo, 3 JST ERATO




Position-Based Dynamics (PBD)

 General framework including Shape Matching
* Input: initial position x, & velocity v,

* At every frame:

P = X, + hv, prediction

Xn+1 = modify(p) position correction
u = (Xp+1 - X /h velocity update
Vo1 = modify(u) velocity correction

Position Based Dynamics [Muller et al., VRIPhys 2006]
http://www.csee.umbc.edu/csee/research/vangogh/13D2015/matthias muller slides.pdf

predgV
<
&

corrected
velocity

friction

collision correction

restitution

19



http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf

Various geometric constraints available in PBD
(other than Shape Matching)

Twist constraint

!! | N Stretch constraint
'giﬁ ' A :/f

Volume constraint

Strain constraint

Robust Real-Time Deformation of Incompressible Surface Meshes [Diziol SCA11] : :
Long Range Attachments - A Method to Simulate Inextensible Clothing in Computer Games [Kim SCA12] Density constraint
Position Based Fluids [Macklin SIGGRAPH13]

Position-based Elastic Rods [Umetani SCA14]

Position-Based Simulation of Continuous Materials [Bender Comput&Graph14] 20



Putting everything together: FLEX in PhysX

https://www.youtube.com/watch?v=z6dAahLUbZqg

» SDK released by NVIDIA!

Unified Particle Physics for Real-Time Applications [Macklin SIGGRAPH14] 2


https://www.youtube.com/watch?v=z6dAahLUbZg

Collisions

[HarmonQ9]
* Another tricky issue

[Kaufman08] [Zheng12]
* Popular methods in PBD:
* For each voxel grid, record
which particles it contains {/’ ‘. o
e Test collisions only among o |
nearby particles

» Recent method specialized for PBD

Collision detection for deformable objects [Teschner CGF05]

Staggered Projections for Frictional Contact in Multibody Systems [Kaufman SIGGRAPHAsia08]
Asynchronous Contact Mechanics [Harmon SIGGRAPH09]

Energy-based Self-Collision Culling for Arbitrary Mesh Deformations [Zheng SIGGRAPH12]

Air Meshes for Robust Collision Handling [Muller SIGGRAPH15] [Muller15] 22




Pointers

* Surveys, tutorials
A Survey on Position-Based Simulation Methods in Computer Graphics [Bender CGF14]
 http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias muller_slides.pdf
 Position-Based Simulation Methods in Computer Graphics [Bender EG15Tutorial]
 http://www.tkim.graphics/DYNAMIC DEFORMABLES/ (recommended)

* Libraries, implementations

* https://code.google.com/p/opencloth/
http://shapeop.org/
http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
https://bitbucket.org/yukikoyama
https://developer.nvidia.com/physx-flex
https://github.com/janbender/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

23


http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://code.google.com/p/opencloth/
http://shapeop.org/
http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
https://bitbucket.org/yukikoyama
https://developer.nvidia.com/physx-flex
https://github.com/janbender/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

