
Introduction to Computer Graphics

– Animation (2) –

May 20, 2021
Kenshi Takayama

Physics-based animation
of deforming objects

• Classic: faithful simulation of physical phenomena
• Mass-spring system
• Finite Element Method (FEM)

• CG-specific: plausible & robust, but not faithful simulation
• Shape Matching (Position-Based Dynamics)

2

Simple example: single mass & spring in 1D
• Mass 𝑚, position 𝑥, spring coefficient 𝑘,

rest length 𝑙, gravity 𝑔 :

𝑚
𝑑!𝑥
𝑑𝑡! = −𝑘 𝑥 − 𝑙 + 𝑚 𝑔

= 𝑓"#$ 𝑥 + 𝑓%&$

• 𝑓%&$: External force (gravity, collision, user interaction)
• 𝑓"#$ 𝑥 : Internal force (pulling the system back to original)

• Spring’s internal energy (potential):
𝐸 𝑥 ≔

𝑘
2 𝑥 − 𝑙 !

• Internal force is the opposite of potential gradient:
𝑓"#$ 𝑥 ≔ −

𝑑𝐸
𝑑𝑥

= −𝑘 𝑥 − 𝑙
3

Equation of motion

𝑙

𝑥(𝑡) 𝑚 𝑔

𝑂

𝑘

Mass-spring system in 3D
• 𝑁 masses: 𝑖-th mass 𝑚! , position 𝑥! ∈ ℝ"

• 𝑀 springs: 𝑗-th spring 𝑒# = 𝑖$, 𝑖%
• Coefficient 𝑘*, rest length 𝑙*

• System’s potential energy for a state 𝐱 = (𝑥$, … , 𝑥&) ∈ ℝ"& :

𝐸 𝐱 ≔ &
+!, -",-#

𝑘*
2

𝑥-" − 𝑥-# − 𝑙*
/

• Equation of motion:

𝐌
𝑑%𝐱
𝑑𝑡%

= −𝛁𝐸(𝐱) + 𝐟'()

• 𝐌 ∈ ℝ01×01 : Diagonal matrix made of 𝑚- (mass matrix) 4

𝑙!

𝑖"

𝑖#

Continuous elastic model in 2D
(Finite Element Method)
• 𝑁 vertices: 𝑖-th position 𝑥% ∈ ℝ!
• 𝑀 triangles: 𝑗-th triangle 𝑡& = (𝑖', 𝑖!, 𝑖()

• Undeformed state: 𝐗 = (𝑋', … , 𝑋)) ∈ ℝ!)
• Deformed state: 𝐱 = 𝑥', … , 𝑥) ∈ ℝ!)

• Deformation gradient:
𝐅& 𝐱 ≔

• System’s potential:
𝐸 𝐱 ≔ :

*$+ %%,%&,%'

𝐴&
2

𝐅& 𝐱 ⊺𝐅& 𝐱 − 𝐈
ℱ
!

• Equation of motion:
𝐌
𝑑!𝐱
𝑑𝑡!

= −𝛁𝐸(𝐱) + 𝐟/0$

• 𝐌 ∈ ℝ$%×$% : Diagonal matrix made of vertices’ Voronoi areas
5

Area of 𝑡!
Green’s strain energy

∈ ℝ"×"

𝑥)
!
–
𝑥)
"

𝑥)
#
–
𝑥)
"

𝑋)
!
–
𝑋)

"

𝑋)
#
–
𝑋)

"

-1

Tessellate the domain
into triangular mesh

Linear transformation
which maps edges

𝐅

𝐅

Computing dynamics
• Problem: Given initial value of position 𝐱(𝑡) and velocity 𝐯 𝑡 ≔ *𝐱

*,
as

compute 𝐱(𝑡) and 𝐯(𝑡) for 𝑡 > 0. (Initial Value Problem)

• Simple case of single mass & spring:
𝑚
𝑑/𝑥
𝑑𝑡/

= −𝑘 𝑥 − 𝑙 + 𝑚 𝑔

è analytic solution exists (sine curve)

• General problems don’t have analytic solution
è From state 𝐱9, 𝐯9 at time 𝑡, compute next state

𝐱9:;, 𝐯9:; at time 𝑡 + ℎ. (time integration)
• ℎ: time step 6

𝐱 0 = 𝐱< and 𝐯 0 = 𝐯< ,

Explicit method

• Pro: easy to compute

• Con: overshooting

• With larger time steps, mass can easily
go beyond the initial amplitude
è System energy explodes over time

7

Discretize acceleration using finite difference:
𝐌 𝐯$%"+𝐯$

,
= 𝐟-./ 𝐱0 + 𝐟12/

Forward Euler
𝐱9:; = 𝐱9 + ℎ 𝐯9
𝐯9:; = 𝐯9 + ℎ 𝐌B; (𝐟CDE(𝐱9) + 𝐟FGE)

Symplectic Euler
𝐱9:; = 𝐱9 + ℎ 𝐯9:;
𝐯9:; = 𝐯9 + ℎ 𝐌B; (𝐟CDE(𝐱9) + 𝐟FGE)

Implicit method: backward Euler

• Represent 𝐯./$ using unknown position 𝐱./$

• Pros: can avoid overshoot

• Cons:
• Expensive to compute (i.e. solve equation)
• Numerical damping (energy dissipation)

8

𝐱./$ = 𝐱. + ℎ 𝐯./$
𝐯./$ = 𝐯. + ℎ 𝐌0$ 𝐟12) 𝐱./$ + 𝐟'()

https://single-mass-spring.glitch.me/

https://single-mass-spring.glitch.me/

Inside of backward Euler

• Reduce to root-finding problem of function 𝐅:ℝ"& ↦ ℝ"&
è Newton’s method:

• Coefficient matrix of large linear system changes at every iteration
è high computational cost! 9

𝐯03# = 𝐯0 + ℎ 𝐌+# 𝐟-./ 𝐱03# + 𝐟12/

Denote unknown 𝐱03# as 𝐲

𝐱9:; = 𝐱9 + ℎ 𝐯9:;

𝐲 -:; ← 𝐲 - −
𝑑𝐅
𝑑𝐲

B;
𝐅(𝐲 -)

= 𝐱9 + ℎ 𝐯9 + ℎ/𝐌B; 𝐟CDE 𝐱9:; + 𝐟FGE
= 𝐱9 + ℎ 𝐯9 + ℎ/𝐌B; −𝛁𝐸 𝐱9:; + 𝐟FGE

= 𝐲 - − ℎ/𝓗K 𝐲 - +𝐌
B;
𝐅(𝐲 -)

2nd derivative of potential 𝐸 (Hessian matrix)

ℎ/𝛁𝐸 𝐲 +𝐌 𝐲 −𝐌 𝐱9 + ℎ 𝐯9 − ℎ/𝐟FGE = 𝟎
𝐅 𝐲

Recent paper: Energy conservation through
combination of forward Euler & backward Euler

10Stabilizing Integrators for Real-Time Physics [Dinev,Liu,Kavan,TOG18]

L Energy increase L Energy decrease J Energy conservation

𝐱!"# = 𝐱! + ℎ 𝐯! " 𝐯!"#
%

𝐯!"# = 𝐯! + ℎ 𝐌&#𝐟 𝐱! " 𝐱!"#
%

Implicit Midpoint

Backward Euler Proposed method

• Both define potential as sum of deformations of small elements
• Differ only in the measure of deformations

Mass spring vs. Finite elements

11
Fast Simulation of Mass-Spring Systems [Liu et al., SIGGRAPH Asia 2013]
Interactive simulation of surgical needle insertion and steering [Chentanez et al., SIGGRAPH 2009]

△

〇

〇

△

Physical accuracy

Compute/impl cost

Mass spring Finite element

Physics-based animation
of deforming objects

• Classic: faithful simulation of physical phenomena
• Mass-spring system
• Finite Element Method (FEM)

• CG-specific: plausible & robust, but not faithful simulation
• Shape Matching (Position-Based Dynamics)

12

Shape Matching: physics animation method tailored for CG

• Meshless deformations based on shape matching
[Müller, Heidelberger, Techner, Gross, SIGGRAPH 2005]

• Features
• Unconditionally stable

• Goes back to rest state no matter what

• Easy to compute/implement

• Caveat: cannot be interpreted
as real physics

è Perfectly suitable for CG
13

Case of single mass & spring (no ext. force)

• 0 ≤ 𝛼 ≤ 1 is “stiffness” parameter unique to PBD
• 𝛼 = 0 è No update of velocity (spring is infinitely soft)
• 𝛼 = 1è Spring is infinitely stiff (?)
è Energy never explodes in any case J

• Note: Unit of 𝛼/ℎ is (time)-1 è 𝛼 has no physical meaning!
• Reason why PBD is called non physics-based but geometry-based

14

𝑣9:; ← 𝑣9 +
M N
O 𝑙 − 𝑥9

𝑥9:; ← 𝑥9 + ℎ 𝑣9:;

𝑙 𝑥(𝑡)

𝑚

𝑂

𝑘

Symplectic Euler Shape Matching

𝑣9:; ← 𝑣9 +
P
M 𝑙 − 𝑥9

𝑥9:; ← 𝑥9 + ℎ 𝑣9:;

Case of general deforming shape (no ext. force)

• Goal position 𝐠
• Rest shape rigidly transformed

such that it best matches the
current deformed state
• (SVD of moment matrix)

• Called “Shape Matching”
• One technique within the PBD framework
• Connectivity info (spring/mesh) not needed è meshless

15

𝐯9:; ← 𝐯9 − ℎ 𝐌B;𝛁𝐸 𝐱9

Explicit Euler Shape Matching

𝐯./$ ← 𝐯. +
3
4
𝐠 𝐱. − 𝐱.

𝐱./$ ← 𝐱. + ℎ 𝐯./$𝐱9:; ← 𝐱9 + ℎ 𝐯9:;

𝐱0

𝐠(𝐱0)

𝐱4

• To allow more complex deformations

Shape Matching per local regions

16FastLSM; fast lattice shape matching for robust real-time deformation [Rivers SIGGRAPH07]

Represent shape as overlapped local regions

Size of local region determines stiffness

Shape Matching per (overlapping) local region
• More complex deformations

• Acceleration techniques

17

Local regions from voxel lattice Local regions from octree Animating hair using
1D chain structure

FastLSM; fast lattice shape matching for robust real-time deformation [Rivers SIGGRAPH07]
Fast adaptive shape matching deformations [Steinemann SCA08]
Chain Shape Matching for Simulating Complex Hairstyles [Rungjiratananon CGF10]

Examples of applying this idea

18

Self-actuated soft objects
Soft objects whose deformation

behavior can be specified via examples

ProcDef; local-to-global deformation for skeleton-free character animation [Ijiri PG09]
Real-Time Example-Based Elastic Deformation [Koyama SCA12]

Position-Based Dynamics (PBD)
• General framework including Shape Matching

• Input: initial position 𝐱5 & velocity 𝐯5

• At every frame:
𝐩 = 𝐱9 + ℎ 𝐯9 prediction
𝐱9:; = modify 𝐩 position correction
𝐮 = 𝐱9:; – 𝐱9 /ℎ velocity update
𝐯9:; = modify 𝐮 velocity correction

19
Position Based Dynamics [Müller et al., VRIPhys 2006]
http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf

(My understanding is still weak)

http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf

Robust Real-Time Deformation of Incompressible Surface Meshes [Diziol SCA11]
Long Range Attachments - A Method to Simulate Inextensible Clothing in Computer Games [Kim SCA12]
Position Based Fluids [Macklin SIGGRAPH13]
Position-based Elastic Rods [Umetani SCA14]
Position-Based Simulation of Continuous Materials [Bender Comput&Graph14]

Various geometric constraints available in PBD
(other than Shape Matching)

20

Twist constraint

Stretch constraint

Volume constraint
Strain constraint

Density constraint

Putting everything together: FLEX in PhysX

• SDK released by NVIDIA!
21Unified Particle Physics for Real-Time Applications [Macklin SIGGRAPH14]

https://www.youtube.com/watch?v=z6dAahLUbZg

https://www.youtube.com/watch?v=z6dAahLUbZg

Collisions
• Another tricky issue

• Popular methods in PBD:
• For each voxel grid, record

which particles it contains

• Test collisions only among
nearby particles

• Recent method specialized for PBD

22

Collision detection for deformable objects [Teschner CGF05]
Staggered Projections for Frictional Contact in Multibody Systems [Kaufman SIGGRAPHAsia08]
Asynchronous Contact Mechanics [Harmon SIGGRAPH09]
Energy-based Self-Collision Culling for Arbitrary Mesh Deformations [Zheng SIGGRAPH12]
Air Meshes for Robust Collision Handling [Muller SIGGRAPH15]

[Harmon09]

[Zheng12][Kaufman08]

[Muller15]

Pointers
• Surveys, tutorials

• A Survey on Position-Based Simulation Methods in Computer Graphics [Bender CGF14]
• http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf
• Position-Based Simulation Methods in Computer Graphics [Bender EG15Tutorial]
• http://www.tkim.graphics/DYNAMIC_DEFORMABLES/ (recommended)

• Libraries, implementations
• https://code.google.com/p/opencloth/
• http://shapeop.org/
• http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
• https://bitbucket.org/yukikoyama
• https://developer.nvidia.com/physx-flex
• https://github.com/janbender/PositionBasedDynamics
• https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

23

http://www.csee.umbc.edu/csee/research/vangogh/I3D2015/matthias_muller_slides.pdf
http://www.tkim.graphics/DYNAMIC_DEFORMABLES/
https://code.google.com/p/opencloth/
http://shapeop.org/
http://matthias-mueller-fischer.ch/demos/matching2dSource.zip
https://bitbucket.org/yukikoyama
https://developer.nvidia.com/physx-flex
https://github.com/janbender/PositionBasedDynamics
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics

