Introduction to Computer Graphics

- Animation (1) -

May 13, 2021
Kenshi Takayama

Skeleton-based animation

- Simple
- Intuitive
- Low comp. cost

Representing a pose using skeleton

- Tree structure consisting of bones $\&$ joints
- Each bone holds relative rotation angle w.r.t. parent joint
- Whole body pose determined by the set of joint angles (Forward Kinematics)
- Deeply related to robotics

Inverse Kinematics

- Find joint angles s.t. an end effector comes at a given goal position
- Typical workflow:
- Quickly create pose using IK, fine adjustment using FK

Simple method to solve IK: Cyclic Coordinate Descent

- Change joint angles one by one
- S.t. the end effector comes as close as possible to the goal position
- Ordering is important! Leaf \rightarrow root
- Easy to implement $\boldsymbol{\rightarrow}$ Basic assignment

step.2-1

step.3-2

IK minimizing elastic energy

Fast Automatic Skinning Transformations

Alec Jacobson ${ }^{1}$
llya Baran²
Ladislav Kavan ${ }^{1}$
Jovan Popović ${ }^{3}$
Olga Sorkine ${ }^{1}$

'ETH Zurich
${ }^{2}$ Disney Research, Zurich
${ }^{3}$ Adobe Systems, Inc.

This video contains narration.

Ways to obtain/measure motion data

Optical motion capture

- Put markers on the actor, record video from many viewpoints (~ 48)

Mocap using inexpensive depth camera

Mocap designed for outdoor scene

Motion Capture from Body-Mounted Cameras

(with audio)
Takaaki Shiratori , Hyun Soo Park , Leonid Sigal ,
Yaser Sheikh , Jessica K. Hodgins -

* Disney Research, Pittsburgh + Camegie Mellon University
https://www.youtube.com/watch?v=xbl-NWMfGPs

Mocap by drone tracking

Motion planning by
FORCES ${ }^{\text {P00 }}$:。

Flycon: Environment-independent Human Pose Estimation with Aerial Vehicles

Tobias Nägeli, Samuel Oberholzer, Silvan Plüss, Javier Alonso-Mora, Otmar Hilliges

ACM SIGGRAPH Asia'18

Advanced Interactive
Technologies

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Motion database
http://mocap.cs.cmu.edu

- Free for research purpose r
- Interpolation, recombination, analysis, search, etc.

Recombining motions

- Allow transition from one motion to another if poses are similar in certain frame

Pose similarity matrix

Motion Graphs [Kovar SIGGRAPH02]

Generating motion through simulation

- For creatures unsuitable for mocap
- Too dangerous, nonexistent, ...

Flexible Muscle-Based Locomotion for Bipedal Creatures

- Natural motion respecting body shape
- Can interact with dynamic environment

SIGGRAPH ASIA 2013

Thomas Geijtenbeek
Michiel van de Panne
Frank van der Stappen

Creating poses using special devices

Tangible and Modular Input Device for Character Articulation

Alec Jacobson ${ }^{1}$
Daniele Panozzo ${ }^{1}$
Oliver Glauser ${ }^{1}$
Cédric Pradalier ${ }^{2}$
Otmar Hilliges ${ }^{1}$
Olga Sorkine-Hornung ${ }^{1}$

${ }^{2}$ GeorgiaTech Lorraine

This video contains narration

Many topics about character motion

Interaction between multiple persons https://www.youtube.com/ watch?v=1S 6wSKI nU

Synthesis of Detailed Hand Manipulations Using Contact Sampling

Yuting Ye C. Karen Liu
Georgia Institute of Technology

Grasping motion
https://www.youtube.com/ watch? $\mathrm{v}=\mathrm{x} 8 \mathrm{c} 27 \mathrm{XYTLTo}$

Path planning

Skinning

$$
\mathbf{v}_{i}^{\prime}=\operatorname{blend}\left(\left\langle w_{i, 1}, \mathbf{T}_{1}\right\rangle,\left\langle w_{i, 2}, \mathbf{T}_{2}\right\rangle, \ldots\right)\left(\mathbf{v}_{i}\right)
$$

- Input
- Vertex positions
$\left\{\mathbf{v}_{i}\right\} i=1, \ldots, n$
- Transformation per bone
-Weight from each bone to each vertex
$\left\{\mathbf{T}_{j}\right\} j=1, \ldots, m$
$\left\{w_{i, j}\right\} i=1, \ldots, n j=1, \ldots, m$
- Output
- Vertex positions after deformation
$\left\{\mathbf{v}_{i}^{\prime}\right\} i=1, \ldots, n$
- Main focus
- How to define weights $\left\{w_{i, j}\right\}$
- How to blend transformations

Simple way to define weights: painting

Better UI for manual weight editing

https://www.youtube.com/watch?v=mfEP8BIXTgQ

Automatic weight computation

- Define weight w_{j} as a smooth scalar field that takes 1 on the j-th bone and 0 on the other bones

- Approximate solution only on surface \rightarrow easy \& fast
- Minimize $2^{\text {nd }}$-order derivative $\int_{\Omega}\left(\Delta w_{j}\right)^{2} d A$ [Jacobson 11]
- Introduce inequality constraints $0 \leq w_{j} \leq 1$
- Quadratic Programming over the volume $\boldsymbol{\rightarrow}$ high-quality

Recent paper: automatic rigging through ML

Simultaneously estimates skeleton \& skinning weights

https://www.youtube.com/watch?v=J90VETgWIDg

Simple way to blend transformations: Linear Blend Skinning

- Represent rigid transformation \mathbf{T}_{j} as a 3×4 matrix consisting of rotation matrix $\mathbf{R}_{j} \in \mathbb{R}^{3 \times 3}$ and translation vector $\mathbf{t}_{j} \in \mathbb{R}^{3}$

$$
\mathbf{v}_{i}^{\prime}=\left(\sum_{j} w_{i, j}\left(\begin{array}{ll}
\mathbf{R}_{j} & \mathbf{t}_{j}
\end{array}\right)\right)\binom{\mathbf{v}_{i}}{1}
$$

- Simple and fast
- Implemented using vertex shader: send $\left\{\mathbf{v}_{i}\right\} \&\left\{w_{i, j}\right\}$ to GPU at initialization, send $\left\{\mathbf{T}_{j}\right\}$ to GPU at each frame
- Standard method

Artifact of LBS: "candy wrapper" effect

Initial shape \& two bones

Deformation using LBS

- Linear combination of rigid transformation is not a rigid transformation!
- Points around joint concentrate when twisted

Alternative to LBS: Dual Quaternion Skinning

Initial shape \& two bones

Deformation using LBS

Deformation using DQS

- Idea
- Quaternion (four numbers) \rightarrow 3D rotation
- Dual quaternion (two quaternions) \rightarrow 3D rigid motion (rotation + translation)

Dual number \& dual quaternion

- Dual number
- Introduce dual unit ε \& its arithmetic rule $\varepsilon^{2}=0$ (cf. imaginary unit i)
- Dual number is sum of primal \& dual components: $\widehat{a}:=a_{0}+\varepsilon a_{\varepsilon}$
- Dual conjugate

$$
\overline{\hat{a}}=\overline{a_{0}+\varepsilon a_{\varepsilon}}=a_{0}-\varepsilon a_{\varepsilon}
$$

$$
a_{0}, a_{\varepsilon} \in \mathbb{R}
$$

- Dual quaternion
- Quaternion whose elements are dual numbers
- Can be written using two quaternions

$$
\widehat{\mathbf{q}}:=\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}
$$

- Dual conjugate: $\quad \overline{\hat{\mathbf{q}}}=\overline{\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}}=\mathbf{q}_{0}-\varepsilon \mathbf{q}_{\varepsilon}$
- Quaternion conjugate:

$$
\widehat{\mathbf{q}}^{*}=\left(\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}\right)^{*}=\mathbf{q}_{0}^{*}+\varepsilon \mathbf{q}_{\varepsilon}^{*}
$$

Arithmetic rules for dual number/quaternion

- For dual number $\hat{a}=a_{0}+\varepsilon a_{\varepsilon}$:
- Reciprocal

$$
\begin{aligned}
& \frac{1}{\hat{a}}=\frac{1}{a_{0}}-\varepsilon \frac{a_{\varepsilon}}{a_{0}^{2}} \\
& \sqrt{\hat{a}}=\sqrt{a_{0}}+\varepsilon \frac{a_{\varepsilon}}{2 \sqrt{a_{0}}}
\end{aligned}
$$

- Square root

Easily derived by combining usual arithmetic rules with new rule $\varepsilon^{2}=0$

- Trigonometric

$$
\sin \hat{a}=\sin a_{0}+\varepsilon a_{\varepsilon} \cos a_{0}
$$

$$
\cos \hat{a}=\cos a_{0}-\varepsilon a_{\varepsilon} \sin a_{0} \quad \text { From Taylor expansion }
$$

- For dual quaternion $\widehat{\mathbf{q}}=\mathbf{q}_{0}+\varepsilon \mathbf{q}_{\varepsilon}$:
- Norm

$$
\|\widehat{\mathbf{q}}\|=\sqrt{\widehat{\mathbf{q}}^{*} \widehat{\mathbf{q}}}=\left\|\mathbf{q}_{0}\right\|+\varepsilon \frac{\left\langle\mathbf{q}_{0}, \boldsymbol{q}_{\varepsilon}\right\rangle}{\left\|\boldsymbol{q}_{0}\right\|}
$$

$$
\widehat{\mathbf{q}}^{-1}=\frac{\widehat{\mathbf{q}}^{*}}{\| \|^{2}}
$$

- Unit dual quaternion satisfies $\|\widehat{\mathbf{q}}\|=1$
- $\Leftrightarrow\left\|\mathbf{q}_{0}\right\|=1 \&\left\langle\mathbf{q}_{0}, \mathbf{q}_{\varepsilon}\right\rangle=0$

Rigid transformation using dual quaternion

- Unit dual quaternion representing rigid motion of translation $\overrightarrow{\mathbf{t}}=\left(t_{x}, t_{y}, t_{z}\right)$ and rotation \mathbf{q}_{0} (unit quaternion):

$$
\widehat{\mathbf{q}}=\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}
$$

Note: 3D vector is considered as quaternion with zero real part

- Rigid transformation of 3D position $\overrightarrow{\mathbf{v}}=\left(v_{x}, v_{y}, v_{z}\right)$ using unit dual quaternion $\widehat{\mathbf{q}}$:

$$
\widehat{\mathbf{q}}(1+\varepsilon \overrightarrow{\mathbf{v}}){\overline{\widehat{\mathbf{q}}^{*}}}^{*}+\varepsilon \overrightarrow{\mathbf{v}^{\prime}}
$$

- $\overrightarrow{\mathbf{v}^{\prime}}: 3 \mathrm{D}$ position after transformation

Rigid transformation using dual quaternion

- $\widehat{\mathbf{q}}=\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}$
- $\widehat{\mathbf{q}}(1+\varepsilon \overrightarrow{\mathbf{v}}) \overline{\widehat{\mathbf{q}}^{*}}=\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)(1+\varepsilon \overrightarrow{\mathbf{v}}) \overline{\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)^{*}}$

$$
=\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)(1+\varepsilon \overrightarrow{\mathbf{v}}) \overline{\left(\mathbf{q}_{0}^{*}+\frac{\varepsilon}{2}\left(\overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)^{*}\right)} \quad \begin{array}{r}
\left(\overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)^{*}=\mathbf{q}_{0}^{*}(\overrightarrow{\mathbf{t}})^{*} \\
=-\mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}
\end{array}
$$

$$
=\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)(1+\varepsilon \overrightarrow{\mathbf{v}}) \overline{\left(\mathbf{q}_{0}^{*}-\frac{\varepsilon}{2} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}\right)}
$$

$$
=\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)(1+\varepsilon \overrightarrow{\mathbf{v}})\left(\mathbf{q}_{0}^{*}+\frac{\varepsilon}{2} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}\right)
$$

$$
=\left(\mathbf{q}_{0}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0}\right)\left(\mathbf{q}_{0}^{*}+\varepsilon \overrightarrow{\mathbf{v}} \mathbf{q}_{0}^{*}+\frac{\varepsilon}{2} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}+\frac{\varepsilon^{2}}{2} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}\right)
$$

$$
=\mathbf{q}_{0} \mathbf{q}_{0}^{*}+\frac{\varepsilon}{2} \overrightarrow{\mathbf{t}} \mathbf{q}_{0} \mathbf{q}_{0}^{*}+\varepsilon \mathbf{q}_{0} \overrightarrow{\mathbf{v}} \mathbf{q}_{0}^{*}+\frac{\varepsilon^{2}}{2} \overrightarrow{\mathbf{f}} \mathbf{\mathbf { q } _ { 0 }} \overrightarrow{\mathbf{v}}_{0}^{*}+\frac{\varepsilon}{2} \mathbf{q}_{0} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}}+\frac{\varepsilon^{2}}{h} \overrightarrow{\mathbf{t}} \mathbf{q}_{0} \mathbf{q}_{0}^{*} \overrightarrow{\mathbf{t}} \quad\left\|\mathbf{q}_{0}\right\|^{2}=1
$$

$$
=1+\varepsilon\left(\overrightarrow{\mathbf{t}}+\mathbf{q}_{0} \overrightarrow{\mathbf{v}} \mathbf{q}_{0}^{*}\right) \quad \text { 3D position } \overrightarrow{\mathbf{v}} \text { rotated by quaternion } \mathbf{q}_{0}
$$

Rigid transformation as "screw motion"

- Any rigid motion is uniquely described as screw motion
- (Up to antipodality)

Screw motion \& dual quaternion

- Unit dual quaternion $\widehat{\mathbf{q}}$ can be written as:

$$
\widehat{\mathbf{q}}=\cos \frac{\hat{\theta}}{2}+\hat{\mathbf{s}} \sin \frac{\hat{\theta}}{2}
$$

- $\hat{\theta}=\theta_{0}+\varepsilon \theta_{\varepsilon}$ $\theta_{0}, \theta_{\varepsilon}$: real number
$\cdot \hat{\mathbf{s}}=\overrightarrow{\mathbf{s}_{0}}+\varepsilon \overrightarrow{\mathbf{S}_{\varepsilon}}$ $\overrightarrow{\mathbf{s}_{0}}, \overrightarrow{\mathbf{s}_{\varepsilon}}$: unit 3D vector
- Geometric meaning
- $\overrightarrow{\mathbf{s}_{0}}$: direction of rotation axis
- θ_{0} : amount of rotation
- θ_{ε} : amount of translation parallel to $\overrightarrow{\mathbf{s}_{0}}$
- $\overrightarrow{\boldsymbol{s}_{\varepsilon}}$: when rotation axis passes through $\overrightarrow{\mathbf{r}}$, it satisfies $\overrightarrow{\mathbf{s}_{\varepsilon}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{s}_{0}}$

Interpolating two rigid transformations

- Linear interpolation + normalization (nlerp)

$$
\operatorname{nlerp}\left(\widehat{\mathbf{q}}_{1}, \widehat{\mathbf{q}}_{2}, t\right):=\frac{(1-t) \widehat{\mathbf{q}}_{1}+t \widehat{\mathbf{q}}_{2}}{\left\|(1-t) \widehat{\mathbf{q}}_{1}+t \widehat{\mathbf{q}}_{2}\right\|}
$$

- Note: $\widehat{\mathbf{q}} \&-\widehat{\mathbf{q}}$ represent same transformation with opposite path

$$
\mathbf{q}_{0}^{\mathrm{t}}, 0<\mathrm{t}<1
$$

$\mathbf{q}_{0}^{\mathbf{0}}=1$ (identity)
$\left(-\mathbf{q}_{\mathbf{0}}\right)^{\mathrm{t}}, 0<\mathrm{t}<1$

- If 4D dot product of non-dual

$$
\mathbf{q}_{0}^{1} \approx\left(-\mathbf{q}_{0}\right)^{1}
$$ components of $\widehat{\mathbf{q}}_{1} \& \widehat{\mathbf{q}}_{2}$ is negative, use $-\widehat{\mathbf{q}}_{2}$ in the interpolation

Blending rigid motions using dual quaternion

$$
\operatorname{blend}\left(\left\langle w_{1}, \widehat{\mathbf{q}}_{1}\right\rangle,\left\langle w_{2}, \widehat{\mathbf{q}}_{2}\right\rangle, \ldots\right):=\frac{w_{1} \widehat{\mathbf{q}}_{1}+w_{2} \widehat{\mathbf{q}}_{2}+\cdots}{\left\|w_{1} \widehat{\mathbf{q}}_{1}+w_{2} \widehat{\mathbf{q}}_{2}+\cdots\right\|}
$$

- Akin to blending rotations using quaternion
- Same input format as LBS \& low computational cost
- Standard feature in many commercial CG packages

122 FPS

Artifact of DQS: "bulging" effect

- Produces ball-like shape around the joint when bended

Overcoming DQS's drawback

Decompose transformation into bend \& twist, interpolate them separately [Kavan12]

After deforming using DQS, offset vertices along normals [Kim14]

Skinning for avoiding self-intersections

- Make use of implicit functions

Implicit Skinning:
Real-Time Deformation with Contact Modeling

Siggraph 2013

Rodolphe Vaillant (1,2), Loïc Barthe (1), Gaël Guennebaud (3), Marie-Paule Cani (4),
Damien Rohmer (5), Brian Wyvill (6), Olivier Gourmel (1), Mathias Paulin (1)
(1) IRIT - Université de Toulouse, (2) University of Victoria, (3) Inria Bordeaux,
(4) LJK - Grenoble Universités - Inria, (5) CPE Lyon - Inria, (6) University of Bath

This video contains narration
https://www.youtube.com/watch?v=RHySGlqEgyk

Other deformation mechanisms than skinning

Unified point/cage/skeleton handles [Jacobson 11]

Bounded Biharmonic Weights for Real-Time Deformation

Alec Jacobson ${ }^{1}$ Ilya Baran² Jovan Popović ${ }^{3}$ Olga Sorkine ${ }^{1,4}$
'New York University
${ }^{2}$ Disney Research, Zurich
${ }^{3}$ Adobe Systems, Inc.
${ }^{4}$ ETH Zurich

This video contains narration

References

- http://en.wikipedia.org/wiki/Motion_capture
- http://skinning.org/
- http://mukai-lab.org/category/library/legacy

