Introduction to Computer Graphics

– Animation (1) –

May 13, 2021 Kenshi Takayama

Skeleton-based animation

- Simple
- Intuitive
- Low comp. cost

https://www.youtube.com/watch?v=DsoNab58QVA

Representing a pose using skeleton

- Tree structure consisting of bones & joints
- Each bone holds relative rotation angle w.r.t. parent joint
- Whole body pose determined by the set of joint angles (Forward Kinematics)
- Deeply related to robotics

Inverse Kinematics

• Find joint angles s.t. an end effector comes at a given goal position

- Typical workflow:
 - Quickly create pose using IK, fine adjustment using FK

https://www.youtube.com/watch?v=e1qnZ9rV_kw

Simple method to solve IK: Cyclic Coordinate Descent

- Change joint angles one by one
 - S.t. the end effector comes as close as possible to the goal position
 - Ordering is important! Leaf \rightarrow root
- Easy to implement → Basic assignment
- More advanced
 - Jacobi method (directional constraint)
 - Minimizing elastic energy [Jacobson 12]

IK minimizing elastic energy

Fast Automatic Skinning Transformations

Alec Jacobson¹ Ilya Baran² Ladislav Kavan¹ Jovan Popović³ Olga Sorkine¹

¹ETH Zurich ²Disney Research, Zurich ³Adobe Systems, Inc.

This video contains narration.

Fast Automatic Skinning Transformations [Jacobson SIGGRAPH12]

https://www.youtube.com/watch?v=PRcXy2LjI9I

Ways to obtain/measure motion data

Optical motion capture

• Put markers on the actor, record video from many viewpoints (~48)

HEAVYWORKS STUDIO - QUALITY ANIMATIONS WITH OPTITRACK MOCAP SYSTEM

from Wikipedia

https://www.youtube.com/watch?v=c6X64LhcUyQ

Mocap using inexpensive depth camera

https://www.youtube.com/watch?v=zXDuyMtzunA

Mocap designed for outdoor scene

Motion Capture from Body-Mounted Cameras

(with audio)

Takaaki Shiratori , Hyun Soo Park , Leonid Sigal , Yaser Sheikh , Jessica K. Hodgins *

* Disney Research, Pittsburgh + Carnegie Mellon University

https://www.youtube.com/watch?v=xbI-NWMfGPs

Motion Capture from Body-Mounted Cameras [Shiratori SIGGRAPH11]

Mocap by drone tracking

Motion planning by FORCES^{PRO}

Flycon: Environment-independent Human Pose Estimation with Aerial Vehicles

Tobias Nägeli, Samuel Oberholzer, Silvan Plüss, Javier Alonso-Mora, Otmar Hilliges

ACM SIGGRAPH Asia'18

ETTH Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

https://www.youtube.com/watch?v=iSJY-vHDmHQ

Flycon: real-time environment-independent multi-view human pose estimation with aerial vehicles [Nageli

Motion database

- <u>http://mocap.cs.cmu.edu/</u>
- 6 categories, 2605 in total
- Free for research purposes
 - Interpolation, recombination, analysis, search, etc.

Recombining motions

• Allow transition from one motion to another if poses are similar in certain frame

Pose similarity matrix

Motion Graphs [Kovar SIGGRAPH02] Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data [Lee SIGGRAPH06] http://www.tcs.tifr.res.in/~workshop/thapar_igga/motiongraphs.pdf

Generating motion through simulation

- For creatures unsuitable for mocap
 - Too dangerous, nonexistent, ...
- Natural motion respecting body shape
- Can interact with dynamic environment

Flexible Muscle-Based Locomotion for Bipedal Creatures

SIGGRAPH ASIA 2013

Thomas Geijtenbeek Michiel van de Panne Frank van der Stappen

https://www.youtube.com/watch?v=pgaEE27nsQw

Creating poses using special devices

Tangible and Modular Input Device for Character Articulation

Alec Jacobson¹ Daniele Panozzo¹ Oliver Glauser¹ Cédric Pradalier² Otmar Hilliges¹ Olga Sorkine-Hornung¹ *This video contains narration*

Tangible and Modular Input Device for Character Articulation [Jacobson SIGGRAPH14] <u>https://www.youtube.com/watch?v=vBX47JamMN0</u> Rig Animation with a Tangible and Modular Input Device [Glauser SIGGRAPH16] ¹⁵

Many topics about character motion

Keyframe animation by topology coordinates

Interaction between multiple persons

https://www.youtube.com/ watch?v=1S_6wSKI_nU Synthesis of Detailed Hand Manipulations Using Contact Sampling

> Yuting Ye C. Karen Liu Georgia Institute of Technology

Grasping motion

https://www.youtube.com/ watch?v=x8c27XYTLTo

Aggregate Dynamics for Dense Crowd Simulation

Submission 0042

Crowd simulation

https://www.youtube.com/ watch?v=pqBSNAOsMDc

Cost Functions

Path planning

https://vimeo.com/33409868

Character motion synthesis by topology coordinates [Ho EG09] Aggregate Dynamics for Dense Crowd Simulation [Narain SIGGRAPHAsia09] Synthesis of Detailed Hand Manipulations Using Contact Sampling [Ye SIGGRAPH12] Space-Time Planning with Parameterized Locomotion Controllers.[Levine TOG11]

Skinning

$\mathbf{v}_{i}' = \operatorname{blend}(\langle w_{i,1}, \mathbf{T}_{1} \rangle, \langle w_{i,2}, \mathbf{T}_{2} \rangle, \dots)(\mathbf{v}_{i})$

- Input
 - Vertex positions
 - Transformation per bone

{
$$\mathbf{v}_i$$
} $i = 1, ..., n$
{ \mathbf{T}_j } $j = 1, ..., m$

- Weight from each bone to each vertex $\{w_{i,j}\}$ i = 1, ..., n j = 1, ..., m
- Output
 - Vertex positions after deformation

$$\{\mathbf{v}'_i\} \ i = 1, ..., n$$

- Main focus
 - How to define weights $\{w_{i,j}\}$
 - How to blend transformations

Simple way to define weights: painting

https://www.youtube.com/watch?v=TACB6bX8SN0

Better UI for manual weight editing

Spline Interface for Intuitive Skinning Weight Editing

Seungbae Bang and Sung-Hee Lee Korea Advanced Institute of Science and Technology (KAIST)

ACM Transactions on Graphics (TOG), 37(5):174, 2018

https://www.youtube.com/watch?v=mfEP8BIXTgQ

Spline Interface for Intuitive Skinning Weight Editing [Bang,Lee,TOG18]

Automatic weight computation

- Define weight w_j as a smooth scalar field that takes 1 on the j-th bone and 0 on the other bones
- Minimize 1st-order derivative $\int_{\Omega} \|\nabla w_j\|^2 dA$ [Baran 07]
 - Approximate solution only on surface → easy & fast
- Minimize 2nd-order derivative $\int_{\Omega} (\Delta w_j)^2 dA$ [Jacobson 11]
 - Introduce inequality constraints $0 \le w_j \le 1$
 - Quadratic Programming over the volume → high-quality

Automatic rigging and animation of 3d characters [Baran SIGGRAPH07] Bounded Biharmonic Weights for Real-Time Deformation [Jacobson SIGGRAPH11]

Teddy/Pinocchio demo

Recent paper: automatic rigging through ML

Simultaneously estimates skeleton & skinning weights

https://www.youtube.com/watch?v=J90VETgWIDg

RigNet: Neural Rigging for Articulated Characters [Xu SIGGRAPH20]

Simple way to blend transformations: Linear Blend Skinning

• Represent rigid transformation \mathbf{T}_j as a 3×4 matrix consisting of rotation matrix $\mathbf{R}_j \in \mathbb{R}^{3\times3}$ and translation vector $\mathbf{t}_j \in \mathbb{R}^3$

$$\mathbf{v}_i' = \left(\sum_j w_{i,j} (\mathbf{R}_j \ \mathbf{t}_j)\right) \begin{pmatrix} \mathbf{v}_i \\ 1 \end{pmatrix}$$

- Simple and fast
 - Implemented using vertex shader: send $\{\mathbf{v}_i\} \& \{w_{i,j}\}$ to GPU at initialization, send $\{\mathbf{T}_j\}$ to GPU at each frame
- Standard method

Artifact of LBS: "candy wrapper" effect

- Linear combination of rigid transformation is not a rigid transformation!
 - Points around joint concentrate when twisted

Alternative to LBS: **D**ual **Q**uaternion **S**kinning

- Idea
 - Quaternion (four numbers) → 3D rotation
 - Dual quaternion (two quaternions) → 3D rigid motion (rotation + translation)

Dual number & dual quaternion

- Dual number
 - Introduce dual unit ε & its arithmetic rule $\varepsilon^2 = 0$ (cf. imaginary unit *i*)
 - Dual number is sum of primal & dual components:

 $\hat{a} \coloneqq a_0 + \varepsilon a_\varepsilon$

• Dual conjugate:
$$\overline{\hat{a}} = \overline{a_0 + \varepsilon a_{\varepsilon}} = a_0 - \varepsilon a_{\varepsilon}$$
 $a_0, a_{\varepsilon} \in \mathbb{R}$

- Dual quaternion
 - Quaternion whose elements are dual numbers
 - Can be written using two quaternions

 $\widehat{\mathbf{q}} \coloneqq \mathbf{q}_0 + \varepsilon \mathbf{q}_\varepsilon$

- Dual conjugate:
- Quaternion conjugate: $\widehat{\mathbf{q}}^* = (\mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon})^* = \mathbf{q}_0^* + \varepsilon \mathbf{q}_{\varepsilon}^*$

 $\overline{\widehat{\mathbf{q}}} = \overline{\mathbf{q}_0 + \varepsilon \mathbf{q}_\varepsilon} = \mathbf{q}_0 - \varepsilon \mathbf{q}_\varepsilon$

Arithmetic rules for dual number/quaternion

- For dual number $\hat{a} = a_0 + \varepsilon a_{\varepsilon}$:
 - Reciprocal $\frac{1}{\hat{a}} = \frac{1}{a_0} \varepsilon \frac{a_{\varepsilon}}{a_0^2}$
 - Square root $\sqrt{\hat{a}} = \sqrt{a_0} + \varepsilon \frac{a_{\varepsilon}}{2\sqrt{a_0}}$
 - Trigonometric $\sin \hat{a} = \sin a_0 + \epsilon a_{\epsilon} \cos a_0$ $\cos \hat{a} = \cos a_0 - \epsilon a_{\epsilon} \sin a_0$

Easily derived by combining usual arithmetic rules with new rule $\varepsilon^2 = 0$

c			,
From	Tavlor	expan	sion

- For dual quaternion $\hat{\mathbf{q}} = \mathbf{q}_0 + \varepsilon \mathbf{q}_{\varepsilon}$:
 - Norm $\|\widehat{\mathbf{q}}\| = \sqrt{\widehat{\mathbf{q}}^* \widehat{\mathbf{q}}} = \|\mathbf{q}_0\| + \varepsilon \frac{\langle \mathbf{q}_0, \mathbf{q}_\varepsilon \rangle}{\|\mathbf{q}_0\|}^{\text{Dot product as 4D vectors}}$
 - Inverse $\widehat{\mathbf{q}}^{-1} = \frac{\widehat{\mathbf{q}}^*}{\|\widehat{\mathbf{q}}\|^2}$
 - Unit dual quaternion satisfies $\|\widehat{\mathbf{q}}\| = 1$
 - \Leftrightarrow $\|\mathbf{q}_0\| = 1 \& \langle \mathbf{q}_0, \mathbf{q}_\varepsilon \rangle = 0$

Rigid transformation using dual quaternion

• Unit dual quaternion representing rigid motion of translation $\vec{\mathbf{t}} = (t_x, t_y, t_z)$ and rotation \mathbf{q}_0 (unit quaternion) :

$$\widehat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$$

Note: 3D vector is considered as
quaternion with zero real part

• Rigid transformation of 3D position $\vec{\mathbf{v}} = (v_x, v_y, v_z)$ using unit dual quaternion $\hat{\mathbf{q}}$:

$$\widehat{\mathbf{q}}(1+\varepsilon \overrightarrow{\mathbf{v}})\overline{\widehat{\mathbf{q}}^*} = 1+\varepsilon \overrightarrow{\mathbf{v}'}$$

• $\vec{v'}$: 3D position after transformation

Rigid transformation using dual quaternion

• $\widehat{\mathbf{q}} = \mathbf{q}_0 + \frac{\varepsilon}{2} \vec{\mathbf{t}} \mathbf{q}_0$

•
$$\widehat{\mathbf{q}}(1+\varepsilon \vec{\mathbf{v}})\overline{\widehat{\mathbf{q}^*}} = \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(1+\varepsilon \vec{\mathbf{v}}\right)\overline{\left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)^*}$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(1+\varepsilon \vec{\mathbf{v}}\right)\overline{\left(\mathbf{q}_0^* + \frac{\varepsilon}{2}\left(\vec{\mathbf{t}}\mathbf{q}_0\right)^*\right)}$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(1+\varepsilon \vec{\mathbf{v}}\right)\overline{\left(\mathbf{q}_0^* - \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)}$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(1+\varepsilon \vec{\mathbf{v}}\right)\left(\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(1+\varepsilon \vec{\mathbf{v}}\right)\left(\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(\mathbf{q}_0^* + \varepsilon \vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\right)\left(\mathbf{q}_0^* + \varepsilon \vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \left(\mathbf{q}_0 + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\mathbf{q}_0^* + \varepsilon \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon^2}{2}\vec{\mathbf{t}}\mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^* + \frac{\varepsilon}{2}\vec{\mathbf{t}}\mathbf{q}_0\mathbf{q}_0^*\vec{\mathbf{t}}\right)$$

$$= \mathbf{1} + \varepsilon\left(\vec{\mathbf{t}} + \mathbf{q}_0\vec{\mathbf{v}}\mathbf{q}_0^*\right)$$
3D position $\vec{\mathbf{v}$ rotated by quaternion \mathbf{q}_0

Rigid transformation as "screw motion"

- Any rigid motion is uniquely described as screw motion
 - (Up to antipodality)

Screw motion & dual quaternion

• Unit dual quaternion $\widehat{\mathbf{q}}$ can be written as:

$$\widehat{\mathbf{q}} = \cos\frac{\theta}{2} + \widehat{\mathbf{s}}\sin\frac{\theta}{2}$$

• $\hat{\theta} = \theta_0 + \varepsilon \theta_{\varepsilon}$ • $\hat{\mathbf{s}} = \overrightarrow{\mathbf{s}_0} + \varepsilon \overrightarrow{\mathbf{s}_{\varepsilon}}$

- $\theta_0, \theta_{\varepsilon}$: real number $\overrightarrow{\mathbf{s}_0}, \overrightarrow{\mathbf{s}_{\varepsilon}}$: unit 3D vector
- Geometric meaning
 - $\overrightarrow{s_0}$: direction of rotation axis
 - θ_0 : amount of rotation
 - θ_{ε} : amount of translation parallel to $\overrightarrow{\mathbf{s}_0}$
 - $\vec{\mathbf{s}_{\varepsilon}}$: when rotation axis passes through $\vec{\mathbf{r}}$, it satisfies $\vec{\mathbf{s}_{\varepsilon}} = \vec{\mathbf{r}} \times \vec{\mathbf{s}_0}$

Interpolating two rigid transformations

• Linear interpolation + normalization (nlerp)

nlerp($\widehat{\mathbf{q}}_1, \widehat{\mathbf{q}}_2, t$) := $\frac{(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2}{\|(1-t)\widehat{\mathbf{q}}_1 + t\widehat{\mathbf{q}}_2\|}$

- Note: \widehat{q} & $-\widehat{q}$ represent same transformation with opposite path
- If 4D dot product of non-dual components of $\hat{\mathbf{q}}_1$ & $\hat{\mathbf{q}}_2$ is negative, use $-\hat{\mathbf{q}}_2$ in the interpolation

 $\frac{2}{2}$ $q_{0}^{t}, 0 < t < 1$ $q_{0}^{0} = 1 \text{ (identity)}$ $(-q_{0})^{t}, 0 < t < 1$

Blending rigid motions using dual quaternion

blend(
$$\langle w_1, \widehat{\mathbf{q}}_1 \rangle, \langle w_2, \widehat{\mathbf{q}}_2 \rangle, \dots$$
) := $\frac{w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots}{\|w_1 \widehat{\mathbf{q}}_1 + w_2 \widehat{\mathbf{q}}_2 + \cdots \|}$

- Akin to blending rotations using quaternion
- Same input format as LBS & low computational cost
- Standard feature in many commercial CG packages

122 FPS

Artifact of DQS: "bulging" effect

• Produces ball-like shape around the joint when bended

Elasticity-Inspired Deformers for Character Articulation [Kavan SIGGRAPHAsia12] Bulging-free dual quaternion skinning [Kim CASA14]

Overcoming DQS's drawback

Elasticity-Inspired Deformers for Character Articulation [Kavan SIGGRAPHAsia12] Bulging-free dual quaternion skinning [Kim CASA14]

Skinning for avoiding self-intersections

• Make use of implicit functions

Implicit Skinning: Real-Time Deformation with Contact Modeling

Siggraph 2013

Rodolphe Vaillant (1,2), Loïc Barthe (1), Gaël Guennebaud (3), Marie-Paule Cani (4), Damien Rohmer (5), Brian Wyvill (6), Olivier Gourmel (1), Mathias Paulin (1)

(1) IRIT - Université de Toulouse, (2) University of Victoria, (3) Inria Bordeaux,
(4) LJK - Grenoble Universités - Inria, (5) CPE Lyon - Inria, (6) University of Bath

This video contains narration

https://www.youtube.com/watch?v=RHySGIqEgyk

Implicit Skinning; Real-Time Skin Deformation with Contact Modeling [Vaillant SIGGRAPH13]

Other deformation mechanisms than skinning

Unified point/cage/skeleton handles [Jacobson 11]

Bounded Biharmonic Weights for Real-Time Deformation

Alec Jacobson¹ Ilya Baran² Jovan Popović³ Olga Sorkine^{1,4}

¹New York University ²Disney Research, Zurich ³Adobe Systems, Inc. ⁴ETH Zurich

This video contains narration

BlendShape

https://www.youtube.com/watch?v=P9fqm8vgdB8

https://www.youtube.com/watch?v=Cg6qBXs0xGU

References

- <u>http://en.wikipedia.org/wiki/Motion_capture</u>
- <u>http://skinning.org/</u>
- <u>http://mukai-lab.org/category/library/legacy</u>