
Robust and Controllable Quadrangulation of
Triangular and Rectangular Regions

Kenshi Takayama
ETH Zurich

Daniele Panozzo
ETH Zurich

Alexander Sorkine-Hornung
Disney Research Zurich

Olga Sorkine-Hornung
ETH Zurich

pa
tte

rn
 1

pattern 2 pattern 3 pattern 4

pa
tte

rn
 1

 pattern 2 pattern 3

 [Nasri et al. 2009]

Figure 1: Basic topological patterns used for quadrangulating rectangular and triangular regions. Vertices with a red circle represent corners.
Vertices with orange and blue fill represent irregular vertices with valence three and five, respectively. pX and pY represent a regular grid of
quadrilaterals padded to the corresponding side of the rectangle (only shown with pattern 1 for brevity). pB , pR, and pL are similarly defined
for the triangle. α and β represent the number of times an edge flow is inserted at these locations. Compared to the patterns proposed by Nasri
et al. [2009], all of our patterns have at least one side that has only one edge, which is important for guaranteeing valid quadrangulation of
the region even when the specified number of edge subdivisions is very small and extreme.

Keywords: quad mesh, subdivision surfaces, filling N -sided re-
gions

1 Introduction

Remeshing an input 3D surface geometry into a coarse quad mesh
with a desired mesh topology is an important process in many pro-
duction pipelines, especially in the context of producing movies
and video games. Algorithms for automatically generating quad
meshes incorporating sparse user constraints have been studied ex-
tensively [Bommes et al. 2013]. However, they are not yet able
to provide the user with direct and explicit controllability over the
resulting mesh topology; the link between the user constraints and
the resulting mesh topology is indirect, forcing the user to run the
algorithm multiple times with different constraints and parameters
to obtain the desired result. The process is tedious since the quad-
rangulation algorithm is not interactive. These algorithms also tend
to perform poorly when coarse mesh resolutions are requested.

For these reasons, many artists today still use rather basic manual
modeling tools for coarse quad remeshing that are not much different
from placing vertices and faces individually [3D-Coat 2013; ZBrush
2013]. Although these tools provide complete control over the
retopology process, they are slow and difficult to use, even for
experienced artists. For example, it is highly non-trivial to manually
design a pure quad mesh that bridges the gap between two partially
quadrangulated regions of a surface.

Recently, a novel interactive system for manual quad remeshing has
been proposed [Takayama et al. 2013]. The key idea is to represent
a quad mesh as a set of N -sided patches containing multiple quads
inside. The user is allowed to sketch patch boundaries freely and
to specify any number of edge subdivision at each patch boundary.
The system inserts singularities (i.e., vertices shared by more or less
than four quads) inside each patch as needed. It is thus important
to design an algorithm that allows quadrangulating a polygon with
prescribed edge subdivisions.

This problem has already been studied in the literature [Schaefer
et al. 2004; Nasri et al. 2009], among which Nasri et al.’s algorithm
is the most relevant to us. While being applicable to generalN -sided
regions, their algorithm does not support arbitrary numbers of edge

subdivision at the region boundary. For example, their algorithm
fails when one side of the region is given 10 and all the other sides
are given 2 as the number of edge subdivision (for any N).

We therefore propose a novel algorithm for quadrangulating rectan-
gular and triangular regions that is provably guaranteed to generate
valid quad mesh topology for any even number of edge subdivision
at the region boundary.

2 Algorithm

Before describing our algorithm in detail, it is important to exclude
unfeasible boundary configurations.

Proposition 1. The number of boundary edges of any quad mesh is
even.

Proof. Denote a quad mesh as M , the number of its faces as
nF (M), and the number of its boundary edges as nE(M), respec-
tively. The proposition is proved by induction. When nF (M) = 1
(i.e., M consists of a single quad), clearly nE(M) = 4 and the
preposition holds. Assume that the proposition holds for any quad
mesh M s.t. nF (M) = k for some integer k. For a quad mesh
M ′ s.t. nF (M

′) = k + 1, there exists a quad mesh M s.t.
nF (M) = k and a quad f where M ′ can be obtained by attaching
f to the boundary of M . Denoting the number of edges shared
by f and M (i.e., they become internal edges in M ′) as a, clearly
nE(M

′) = nE(M) + 4 − 2a. nE(M) is even according to the
assumption, thus nE(M

′) is also even. Therefore, the proposition
holds for any quad meshM ′ s.t. nF (M

′) = k+1, and by induction,
the proposition holds for any quad mesh.

In the following, we assume that the sum of the numbers of edge
subdivisions specified at the boundary of the region is even and call
this valid input. Apart from this restriction, it is possible to arbi-
trarily vary the edge subdivision, including extremely asymmetric
subdivision counts, and our algorithm will efficiently generate a
corresponding quad mesh connectivity.

2.1 Topological patterns

The basic idea is to use topological patterns to generate the patch
connectivity given the constraints. We devise four patterns for rect-
angular patches and three for triangular ones (Fig. 1). Let us denote
the desired number of edge subdivisions per side by B, T,R,L (for
Bottom, Top, etc.) for 4-sided regions and B,R,L for 3-sided re-
gions. The relation between these numbers determines which pattern
will be used to construct the connectivity.

Each pattern is a “minimal” instance of a certain graph configuration,
from which an infinite family of patch connectivities can be pro-
duced by varying the parameters, which are the number of edge flow
insertions α and β, and the number of outer paddings: horizontal
and vertical paddings for 4-sided patches (called pX and pY) and
triangle paddings for 3-sided patches (pB , pR, pL). See Figure 2
for an illustration. A single outer padding step adds an edge loop
parallel to the patch side, while insertion of inner edge flows can be
performed in certain directions, as shown in Figures 1 and 2 by the
blue and purple arrows. For rectangular patches, the outer padding
can be performed on both opposing sides (top-bottom, left-right),
which effectively translates the irregular vertices in parallel (Fig-
ure 3, top). In addition, with patterns 3 and 4 for rectangular regions
and patterns 2 and 3 for triangular regions, the padding can be split
and inserted in the middle of the patch, which effectively makes the
distance between irregular vertices larger (Figure 3, bottom). Most
importantly, any variation of these parameters does not change the
number of irregular vertices – it is fixed per pattern.

valence 5

valence 3

valence 3

corner

Figure 2: Using a patch pattern (here, pattern 2, cf. Fig. 1) to
generate a quad-only tessellation. Patch corners are circles with red
boundary.

In contrast to the patterns proposed by Nasri et al. [2009], all our
patterns have at least one side that has only one edge, which is im-
portant when dealing with a very small number of edge subdivisions.
Note that while patterns 1 and 2 for rectangular regions and the
pattern 1 for triangular regions can be derived from Nasri et al.’s
patterns, the other patterns are novel and necessary to support an
arbitrary number of edge subdivisions.

Figure 3: Moving irregular vertices by changing the distribution of
padding added to the opposing sides (top), or to the middle of the
pattern (bottom).

2.2 Pattern selection

Here we describe how a pattern is selected based on the specified
number of edge subdivisions for each side of the boundary. For
rectangular regions, we denote the differences between the numbers
of edge subdivisions between opposing sides by dX = B − T and
dY = R − L. Without loss of generality, we assume an order of
sides such that dX ≥ dY . An appropriate pattern is selected based
on the configuration of dX and dY as follows. For simple cases
where dX = dY = 0 and dX = dY > 0, the regular grid and
pattern 1 are selected, respectively. For cases where dX > dY , we
first check if the specified number of edge subdivisions is extreme
(B > R + T + L). If this is not the case, pattern 2 is selected.
Otherwise, patterns 3 and 4 are selected if dY = 0 and dY > 0,
respectively. For triangular regions, similarly to the above, we
assume an order of sides such that B ≥ R ≥ L. We first check if
the specified number of edge subdivisions is extreme (B > R+ L).
If this is not the case, pattern 1 is selected. Otherwise, patterns 2 and
3 are selected if R = L and R > L, respectively.

2.3 Parameter calculation

Once an appropriate pattern is selected, the next step is to calculate
its parameters such that it satisfies the specified number of boundary
edge subdivisions.

Rectangular region, pattern 1. It is clear from the pattern that:

R = L+ 1 + α (1)

which gives:
α = R− L− 1. (2)

The padding parameter can be derived as: pX = T − 1 and
pY = L− 1.

Rectangular region, pattern 2. It is clear from the pattern that:

R = L+ α− β (3)
B = T + 2 + α+ β (4)

which gives:

α = (B − T +R− L− 2)/2 (5)
β = (B − T −R+ L− 2)/2. (6)

The padding parameter can be derived as: pX = T − 1 and
pY = R− 1− α.

Rectangular region, pattern 3. It is clear from the pattern that:

B = T + 2 + 2α (7)

which gives:
α = (B − T − 2)/2. (8)

The padding parameter can be derived as: pX = T − 1 and
pY = R− 1.

Rectangular region, pattern 4. It is clear from the pattern that:

R = L+ 1 + α (9)
B = T + 3 + α+ 2β, (10)

which gives:

α = R− L− 1 (11)
β = (B − T − 3− α)/2. (12)

The padding parameter can be derived as: pX = T − 1 and pY =
L− 1.

Triangular region, pattern 1. It is clear from the pattern that:

B = 2 + pR + pL (13)
R = 1 + pL + pB (14)
L = 1 + pB + pR (15)

which gives:

pB = (R+ L−B)/2 (16)
pR = (B + L−R− 2)/2 (17)
pL = (B +R− L− 2)/2. (18)

Triangular region, pattern 2. It is clear from the pattern that:

B = 4 + pR + pL + 2α (19)
R = 1 + pB + pL (20)
L = 1 + pB + pR (21)

which gives:

pB = (R+ L−B + 2 + 2α)/2 (22)
pR = (B + L−R− 4− 2α)/2 (23)
pL = (B +R− L− 4− 2α)/2, (24)

where α is a user-specified parameter chosen from the range
[(B − L−R− 2)/2, (B − 4)/2].

Triangular region, pattern 3. It is clear from the pattern that:

L = 1+ pR + pB , R = 2+ pL + pB , B = 3+ pR + pL +2α,
(25)

which gives:

pL = (R+B − L− 4− 2α)/2 (26)
pR = (L+B −R− 2− 2α)/2 (27)
pB = (L+R−B + 2α)/2, (28)

where α is a user-specified parameter chosen from the range
[(B − L−R)/2, (L+B −R− 2)/2].

2.4 Discussion

Note that a quad mesh generated using our algorithm is not the only
choice that satisfies certain number of boundary edge subdivisions.
For example, Nasri et al. [2009] also considered extreme cases and
proposed to attach two of their patterns side by side for rectangular
regions, leading to a quad mesh topology different from ours for the
same input (4). Compared to their method, our patterns ensure that
irregular vertices are connected by the same edge flow, as much as
possible, often resulting in more desirable meshing. If a different
configuration is needed, the user can always split a single patch into
two and adjust the topology as desired.

[Nasri et al. 2009] Ours (pattern 4)

Figure 4: Quadrangulations of a rectangular region in extreme
cases using the pattern of [Nasri et al. 2009] (left) and our pattern 4
(right). Note that our pattern ensures that irregular vertices are
connected by the same edge flow as much as possible.

Extending this approach to higher number of polygonal sides
(N ≥ 5) is left for future work, as the number of possible cases
to be considered grows in a combinatorial manner. In practice,
the user can easily fill pentagonal or other polygonal regions by
combining rectangular and triangular patches.

3 Proof of algorithm generality

In this section, we prove that our algorithm can quadrangulate trian-
gular and rectangular regions with arbitrary number of edge subdivi-
sions specified at the region boundary.

3.1 Patterns for rectangular region

We use the same notation as in Section 2.2: dX = B − T, dY =
R− L and assume dX ≥ dY ≥ 0.

If dX = 0, the region can be trivially quadrangulated with a regular
grid.

In the following, we consider the condition for a pattern to be able to
realize a valid quadrangulation given (B,R, T, L) as input, which
we call realizability condition hereafter. In general, a pattern’s
realizability condition is derived by restricting its parameters to be
non-negative.

Assuming dX = dY > 0, consider the realizability condition of
pattern 1:

α = R− L− 1 ≥ 0 (29)
pX = T − 1 ≥ 0 (30)
pY = L− 1 ≥ 0. (31)

The first condition always holds under the assumption: R − L =
dY ≥ 1 > 0. The second and third conditions obviously hold.
Therefore pattern 1 covers all cases where dX = dY > 0.

Assuming dX > dY , consider the realizability condition of pat-
tern 2:

α = (B − T +R− L− 2)/2 ≥ 0 (32)
β = (B − T −R+ L− 2)/2 ≥ 0 (33)
pX = T − 1 ≥ 0 (34)
pY = R− 1− α ≥ 0. (35)

Note that dX >= dY + 2 because otherwise (if dX = dY + 1)
the sum of (B,R, T, L) would become odd, which violates our
assumption. This ensures that the first and second conditions always
hold. The third condition also obviously holds. The fourth condition
gives:

B ≤ R+ T + L (36)

which is the realizability condition of pattern 2. Therefore pattern 2
covers all cases where dX > dY as long as its realizability condition
holds: B ≤ R+ T + L. Note that Nasri et al. [2009] also mention
this condition.

In the following, we assume dX > dY and B > R + T + L.
Assuming dY = 0, consider the realizability condition of pattern 3:

α = (B − T − 2)/2 ≥ 0 (37)
pX = T − 1 ≥ 0 (38)
pY = R− 1 ≥ 0. (39)

The first condition always holds because dX ≥ dY + 2 ≥ 2 as
shown previously. The second and third conditions obviously hold.
Therefore pattern 3 covers all cases where dX > dY = 0.

Assuming dY > 0, which is the last remaining case, consider the
realizability condition of pattern 4:

α = R− L− 1 ≥ 0 (40)
β = (B − T − 3− α)/2 ≥ 0 (41)
pX = T − 1 ≥ 0 (42)
pY = L− 1 ≥ 0. (43)

The first condition holds from the assumption. The second condition
holds becauseB−T−3−α = dX−3−dY +1 = dX−dY −2 ≥ 0
as shown previously. The third and fourth conditions obviously hold.
Therefore pattern 4 covers all cases where dX > dY > 0.

3.2 Patterns for triangular region

As in Section 2.2, we assume B ≥ R ≥ L. The proof is similar to
the above section.

Consider the realizability condition of pattern 1:

pB = (R+ L−B)/2 ≥ 0 (44)
pR = (B + L−R− 2)/2 ≥ 0 (45)
pL = (B +R− L− 2)/2 ≥ 0. (46)

We show that this condition always holds when B = R. The first
condition holds obviously. The second condition holds because L
cannot be smaller than 2 (otherwise the sum of (B,R,L) would
become odd). The third condition holds becauseB cannot be smaller
than 2. Therefore pattern 1 covers all cases where B = R ≥ L.

In the following, we assume B > R (or equivalently B ≥ R+ 1)
and consider the realizability condition of pattern 1. The second
condition holds because B+L−R− 2 ≥ (R+1)+L−R− 2 =
L− 1 ≥ 0. The third condition holds because B cannot be smaller
than 2. The first condition gives:

B ≤ R+ L (47)

which is the realizability condition of pattern 1. Therefore pattern
1 covers all cases as long as its realizability condition holds: B ≤
R+ L. Note that Nasri et al. [2009] also mention this condition.

In the following, we assume B > R + L. Note that this means
B ≥ R+L+ 2, because otherwise (i.e., B = R+L+ 1) the sum
of (B,R,L) would become odd.

Further assuming that R = L, consider the realizability condition
of pattern 2. Because pattern 2 has a user-specified parameter α, its
realizability condition is parameterized by α:

pB = (R+ L−B + 2 + 2α)/2 ≥ 0 (48)
pR = (B + L−R− 4− 2α)/2 ≥ 0 (49)
pL = (B +R− L− 4− 2α)/2 ≥ 0. (50)

This condition gives one lower bound and two upper bounds for
α. In order for α that satisfies this condition to exist, the following
condition must hold:

max(B−R−L−2, 0) ≤ min(B+R−L−4, B+L−R−4). (51)

This condition holds because

max(B−R−L−2, 0) =B −R− L− 2

≤B − 4

=min(B +R− L− 4, B + L−R− 4)

using the fact that B ≥ R + L + 2 and R = L ≥ 1. Therefore
pattern 2 covers all cases where B > R+ L and R = L.

AssumingR > L, which is the last remaining case, consider the real-
izability condition of pattern 3. Similar to the above, its realizability
condition is parameterized by α:

pL = (R+B − L− 4− 2α)/2 (52)
pR = (L+B −R− 2− 2α)/2 (53)
pB = (L+R−B + 2α)/2. (54)

This condition gives one lower bound and two upper bounds for
α. In order for α to exist that satisfies this condition, the following
condition must hold:

max(B−L−R, 0) ≤ min(B+R−L−4, B+L−R−2). (55)

For the right hand side, we have

B +R− L− 4 ≥ B + (L+ 1)− (R− 1)− 4 (56)
= B + L−R− 2. (57)

Finally we show that the condition holds:

min(B +R− L− 4, B + L−R− 2) =B + L−R− 2

≥B + L−R− 2L

=B − L−R

=max(B − L−R, 0).

Therefore pattern 3 covers all cases where B > R+L and R > L.

References

3D-COAT, 2013. Pilgway. Version V3, http://3d-coat.
com/.

BOMMES, D., LEVY, B., PIETRONI, N., PUPPO, E., SILVA, C.,
TARINI, M., AND ZORIN, D. 2013. Quad-mesh generation and
processing: A survey. Comput. Graph. Forum XX, X.

NASRI, A., SABIN, M., AND YASSEEN, Z. 2009. Filling n-sided
regions by quad meshes for subdivision surfaces. Comput. Graph.
Forum 28, 6, 1644–1658.

SCHAEFER, S., WARREN, J., AND ZORIN, D. 2004. Lofting curve
networks using subdivision surfaces. In Proc. SGP, 103–114.

TAKAYAMA, K., PANOZZO, D., SORKINE-HORNUNG, A., AND
SORKINE-HORNUNG, O. 2013. Sketch-based generation and
editing of quad meshes. ACM Trans. Graph. 32, 4.

ZBRUSH, 2013. Pixologic, Inc. Version 4.4, http://www.
pixologic.com/zbrush/.

http://3d-coat.com/
http://3d-coat.com/
http://www.pixologic.com/zbrush/
http://www.pixologic.com/zbrush/

