
Pacific Graphics 2009 Volume 28 (2009), Number 7
S. Lee, D. Lischinski, and Y. Yu
(Guest Editors)

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

ProcDef: Local-to-global Deformation for
Skeleton-free Character Animation

Takashi Ijiri1, 2, Kenshi Takayama2, Hideo Yokota1, and Takeo Igarashi2, 3

1Riken, 2The University of Tokyo, and 3JST ERATO

Abstract
Animations of characters with flexible bodies such as jellyfish, snails, and, hearts are difficult to design using
traditional skeleton-based approaches. A standard approach is keyframing, but adjusting the shape of the flexi-
ble body for each key frame is tedious. In addition, the character cannot dynamically adjust its motion to re-
spond to the environment or user input. This paper introduces a new procedural deformation framework (Proc-
Def) for designing and driving animations of such flexible objects. Our approach is to synthesize global motions
procedurally by integrating local deformations. ProcDef provides an efficient design scheme for local deforma-
tion patterns; the user can control the orientation and magnitude of local deformations as well as the propaga-
tion of deformation signals by specifying line charts and volumetric fields. We also present a fast and robust de-
formation algorithm based on shape-matching dynamics and show some example animations to illustrate the
feasibility of our framework.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation.

1. Introduction

Most animation authoring methods are designed for rigged
characters whereby the character body is divided into near-
rigid parts such as arms and legs, and the user controls the
joint angles between them. However, little work has dealt
with the animation of flexible objects without specific
skeletal structures such as jellyfish, snails, slugs, hearts,
and stomachs. While the typical approach to this type of

object is to set a sequence of discrete key poses and inter-
polate them in time, specifying individual key poses by
manipulating many control points is tedious work. Fur-
thermore, making these objects respond to external forces
such as contacts and collisions after all key poses are com-
plete is very difficult.

To address this issue, we propose a procedural deforma-
tion framework (ProcDef) for designing animations of non-
articulated objects that are difficult to handle using existing

(d)

(a) (c)

(b)
(f)

(e)

Figure 1: Swimming jellyfish. The user constructs an orientation field (b) and a phase-shift field (c) on a tetrahedral model
(a) and sets deformation charts (d). Based on the specified parameters, the system synthesizes global motions induced by the
accumulation of local deformations (e). We visualize the propagation of deformation signals in (f), where excited vertices are
highlighted in red.

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

skeleton- or keyframing-based methods. The key observa-
tion is that the deformations of such flexible objects are
driven by expansion and contraction of the local tissues.
Local tissues receive some excitation signals and transform
their shapes individually, and then the accumulation of the
local deformations induces the global motion. For example,
a heart is a muscular organ in which muscle fibers are
aligned in a spiral direction. When beating, the heart mus-
cles receive an electronic signal arising in the sinoatrial
node and locally contract along their fiber orientations.
This induces a twisting global motion. Based on this ob-
servation, we propose to create the global motion of a flex-
ible object by controlling its local deformations. The user
specifies local deformations such as contraction and expan-
sion, and the system synthesizes the global motion by as-
sembling the local deformations and taking the external
forces into account. We also show that stimuli–response
deformations can be naturally designed within this frame-
work.

We present an efficient design scheme for complicated
local deformation patterns. We use line charts and three
volumetric fields over the model; these are an orientation
field, an amplitude field, and a phase-shift field. The line
charts, called deformation charts, define cyclic time-
varying stretching and contraction of a local element in
three directions. The orientation field defines the direction
of the local stretching and contraction. The amplitude field
allows the space-dependent modulation of the deformation
magnitude. This field is particularly useful for designing
bending motions. The phase-shift field allows the user to
design excitation propagation phenomena. We provide a
direct manipulation interface for the line charts and paint-
ing interfaces [TOII08] for constructing these three volu-
metric fields.

We also introduce a robust and efficient algorithm based
on shape matching dynamics [MHTG05; RJ07] for compu-
ting global motions induced by the accumulations of local
deformations. Our algorithm is an extension of lattice
shape matching (LSM) [RJ07] with two main differences.
First, while LSM uses the original lattice shape as a rest
configuration, we locally deform the original shape based
on the user-specified parameters and use the deformed
shape as a rest configuration. Second, we use a tetrahedral
mesh instead of a regular lattice. Since we rely on shape
matching dynamics, we can share the same advantages
with them: unconditional robustness and low computation-
al cost.

Figure 1 shows an example animation of a swimming
jellyfish. The user can easily design such animations by
specifying the volumetric fields and the deformation charts.
The resulting animations are computed in real time and the
user can interactively add external forces by dragging part
of an object with the mouse during the animation.
Contributions:
- Introducing a new procedural animation framework whe-
reby global motions are induced by accumulations of local
deformations (Sec. 3).

- Presenting a sophisticated scheme for designing local
deformation patterns using line charts and three volumetric
fields (Sec. 4).
- Showing that shape matching dynamics are useful for
synthesizing motions driven by local deformations (Sec. 5).
- Showing some example animations demonstrating the
effectiveness of the approach (Sec. 6).

2. Related Work

Local-to-global deformation: The concept of local-to-
global deformations was originally presented by Barr
[Bar84]. However the paper only dealt with relatively sim-
ple cases where local deformations are globally consistent.
When local deformations contain some conflicts, local
shapes need to compromise each other. Such deformations
were presented in biologically motivated studies. Rolland
et al. [RBC03] studied the asymmetric growth of the petals
of a snapdragon in two dimensions. They represented a
petal with an elastic triangular mesh and emulated its
growth by modifying the rest length of each edge. Ijiri et al.
[IYKI08] extended this model to three dimensions, and
Combaz and Neyret introduced a semi-interactive model-
ing system for wrinkles of fabrics [CN02] and organic
shapes such as leaves [CN06]. Their systems deform an
elastic surface by locally expanding the user-specified
regions and relaxing the accumulated energies. In these
systems, the user specifies the local growth rate by textures
or painting interfaces. However, these studies are limited to
thin membranes and are intended only for growth (expan-
sion) of tissues. In medical science, finite element-based
systems have been developed to simulate volumetric de-
formations of organs such as the heart [AKS*04;
WSSH04]. These systems, however, are either for off-line
simulations or require specific hardware.

Detail-preserving deformations: Gradient domain
mesh deformation method is an active research area. The
key concept is to cast mesh deformation as an energy mi-
nimization problem. The energy function contains the
terms for detail preservation and positional constraints. The
detail preservation term involves both the local differen-
tials and local transformations. We refer the reader to sur-
veys of this field [Sor06; BS08]. Note that these methods
only consider static surface geometry; it is difficult to ap-
ply them to dynamic deformations driven by internal forces.

Deformable models: After Terzopoulos et al. [TPBF87]
introduced a finite difference approach, many physically
based methods and models have been developed to simu-
late deformable objects including mass-spring models, and
finite element or volume methods. More information is
contained in surveys of this field [GM97; NMK*05].

Shape-matching methods have been recently introduced
to achieve fast and unconditionally stable deformations.
Müller et al. [MHTG05] first applied shape matching to
deformable models. They find the best matching rigid (or
linear) transformation from an undeformed rest shape to
the current deformed shape and determine the goal position

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

of each particle by the transformed rest shape. They then
pull particles to their goal positions. Rivers and James
[RJ07] proposed an extension of this approach called lat-
tice shape matching (LSM) to simulate more degrees of
freedom. They construct overlapped local regions for all
particles of a volumetric lattice. They then apply shape
matching to each local region, and blend the results to ob-
tain the smoothed goal positions. Steinemann et al.
[SOG08] extended LSM by applying dynamic adaptive
sampling to represent heterogeneous stiffness, and Stumpp
et al. [SSBT08] apply a similar approach to cloth.

Virtual character design environment: Some plat-
forms exist in which users can create virtual characters and
design their motions from scratch. Modulobe [EHW*08]
provide LEGO-like interfaces. The user can construct vir-
tual creatures by connecting primitives such as rectangular
solids or shafts. The user can also control the angles of
joints by cyclic functions to design motions. However,
these systems are limited to articulated models. Sodaplay
[Bur] and Springs World 3D [Fal] allow the user to create
elastic characters. In these systems, the user constructs a
model by connecting springs and designs animation by
updating the rest length of each spring using a cyclic func-
tion. Although these systems are capable of creating elastic
character animations, the spring model is unstable for large
deformations or strong external forces, and easily generates
undesired oscillations. In addition, these systems require
the user to control the motion of each spring one-by-one,
which makes creating characters with many springs both
tedious and difficult.

3. ProcDef: Local-to-Global Animation Framework

We introduce a new procedural deformation framework
(ProcDef) for animating flexible objects. Although many
studies on deformable models have been carried out, some
of which are mentioned above, most of them focus on pas-
sive deformations caused by external forces. In contrast,
this paper focuses mainly on self-activated motions. Our
framework is useful for designing animations of actively
moving flexible characters (e.g., jellyfish and worms) or
organs (e.g., hearts and stomachs).

We assume that global motion of a flexible object is dri-
ven by the accumulation of local deformations. Figure 2
shows an overview of the ProcDef framework. Before the
animation, we prepare a volumetric tetrahedral mesh and
define a local region Ni around each mesh vertex xi by
connecting immediate (1-ring) neighborhood vertices.
Neighboring local regions overlap each other (a). In each
animation step, we first deform each region Ni of the origi-
nal mesh based on the user-specified deformation function
Ti(t), and then synthesize a new global shape that satisfies
the deformed local regions as much as possible. For exam-
ple, if we horizontally expand the upper regions and con-
tract the lower regions (b), the global shape bends down-
ward (c). If we contract the upper regions and expand the
lower regions (d), the global shape bends in the opposite
direction (e).

The local deformation function Ti(t) depends on vertex i
and time t. We define Ti(t) as a linear transformation to
simplify the problem. Note that even locally linear trans-
formations can generate globally complicated nonlinear
deformations (Sec. 6). A naive approach is to have the user
define the individual Ti(t) manually as described by [Bur].
However, designing expressive motions in this way is too
time-consuming and difficult. In the next section, we there-
fore present an efficient scheme for defining Ti(t) with few
global controls.

(c) (e)

T(t0) T(t1)(b) (d)

(a)

Ni

Figure 2: Overview of ProcDef. We first deform individual
local regions Ni (b)(d) of the original mesh (a) by the user-
specified T(t) and synthesize the global shape that satisfies
the deformed local shapes (c)(e).

4. Local Deformation Pattern Design

This section introduces an efficient and intuitive scheme
for designing local deformation patterns Ti(t) ∈ R3×3. We
assume that a single static orientation field (a set of three
orthogonal vector fields) is defined inside the model. This
orientation field determines the orientations of the local
deformations. We believe that this assumption is natural,
since organic objects usually have fixed fiber orientations
and the local deformations are aligned to the orientations
(e.g., the heart). We provide a graph interface called de-
formation charts to control the time-varying cyclic defor-
mations. The system allows the user to optionally specify
an amplitude field and a phase-shift field for more compli-
cated deformation patterns. We provide painting interfaces
for constructing these fields. We also introduce a stimuli–
response framework that allows the user to design specific
behaviors when the object contacts obstacles.

4.1 Orientation Field Design

In our definition, an orientation field is a set of three ortho-
gonal vector fields in which three orthogonal unit vectors
(d1, d2, d3) are defined at each vertex. Since designing
appropriate orthogonal vector fields over the whole model
is generally difficult for the user, we divide the design
process into two steps [TOII08].

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

In the first step, the user constructs a smooth layer field
by placing constraint points with a painting interface. The
user selects a color that represents a layer value; blue and
red correspond to the outermost and innermost parts re-
spectively. The user then paints the color on the model
using three tools: a single face fill tool, a flat region fill
tool, and a stroke tool [TOII08]. The single face fill tool
allows the user to paint the selected color onto a triangle
under the mouse cursor, and the system places constraint
points with the selected layer value on three vertices of the
triangle. The flat region fill tool allows painting on mul-
tiple triangles that construct a near-flat surface (the user
can choose the angle threshold); the system places con-
straint points with the selected value at all vertices of the
near-flat surface. The stroke tool allows the user to draw a
colored stroke on the model surface and the system places
constraint points along the stroke. During painting, the user
can interactively cut the model by drawing a cutting stroke
and paint on the cross sections. After each painting action,
the system automatically interpolates the layer values asso-
ciated with the constraints over the model so that it gene-
rates a smooth layer field. We apply a radial basis function
(RBF) for the interpolation [TO99], and we use the gra-
dients of the obtained layer field as secondary directions of
the orientation field.

In the second step, the user specifies the primary direc-
tions of the orientation field by drawing strokes. The user
selects a layer (iso-surface of the layer field) and draws
strokes on the layer. This ensures that the stroke direction
is always perpendicular to the gradient direction of the
layer field. After drawing each stroke, the system imme-
diately interpolates the stroke orientation over the model;
we individually interpolate x, y, and z values of the tangent
directions of the input strokes in three-dimensional space
using the RBF and then normalize the interpolated x, y, and
z values to obtain a unit vector at each vertex. Finally, the
system estimates the third directions of the orientation field
by taking the cross product of the primary and secondary
directions.

Figure 3 shows a design process of an orientation field
for the jellyfish model. The user first paints blue (outer-
most) on the outer surface and red (innermost) on the inner
surface of the model using the flat region fill tool (a) to
generate the smooth layer field (b). The user can cut the
model by drawing a cutting stroke (the red line in (b)) to
examine the layer structure. The user next draws four
strokes onto a layer to specify the primary direction of the
orientation field. Two strokes are placed on the near side
and the others are on the far side (c). The system finally
constructs the smooth orientation field (d). The three fig-
ures in (d) show the primary, secondary, and tertiary orien-
tations from left to right.

4.2 Deformation Charts

After designing the smooth orientation field over the model,
the user specifies the local expansion/contraction rate using
three line charts that we call deformation charts (Fig. 4).
Each of the three charts represents an expansion / contrac-

tion rate in the primary, secondary, or tertiary direction of
the orientation field. While the horizontal axis corresponds
to the phase [0, T], where T is the user-specified time cycle,
the vertical axis represents the expansion/contraction rate
[1/A, A], where A > 1 is the user-specified amplitude value.
The left and right edges of the charts are connected to
represent cyclic deformation behavior. The vertical red bar
indicates the timeline and moves from left to right repeat-
edly. The user can modify the three charts by adding or
removing control points or by dragging existing control
points in the charts.

We also provide a volume preservation mode, whereby
the user can modify the chart for the primary direction, and
the system automatically adjusts the remaining secondary
and tertiary charts so that the local transformation always
preserves the original volume. The system adjusts the sec-
ondary and tertiary charts to maintain c1(t) × c2(t) × c3(t) =
1, where c1(t), c2(t), and c3(t) are the values of the primary,
secondary, and tertiary charts at time t. We provide two
options for the user: adjusting both charts in which we set
c2(t) = c3(t) =)(c1 1 t/ , or adjusting the secondary chart
only in which we set c2(t) = 1/c1(t) and c3(t) = 1.

Calculation of local linear transformation: Given
three directions of the orientation field (d1, d2, d3) and
expansion/contraction rates from the deformation charts
(c1(t), c2(t), c3(t)) for a vertex i at time t, the local linear
transformation Ti(t) is defined as

T
321))(c),(c),(c diag()(DDT tttti = , (1)

where D = (d1 d2 d3) ∈ R3×3 and diag(c1, c2, c3) is a 3 × 3
diagonal matrix of which the diagonal elements are c1, c2,
and c3.

(a)

(b) (d)

(c)

Figure 3: User interface for designing an orientation field.

×1/A

×A

×1

contract

expand

0 T

For primary direction

Time line Control points

0 T

For secondary direction

0 T

For tertiary direction

Tensor field

Figure 4: Deformation charts to define expansion / con-
traction rate. Top row shows an orientation field and a
local region (cube). The three charts define the deforma-
tion rate in the primary, secondary, and tertiary directions
of the orientation field.

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

4.3 Amplitude/Phase Shift Fields

The orientation field and the deformation charts deform the
entire local regions in the same way and lack the ability to
represent rich motions. To support more complicated con-
trol, we allow the user to optionally specify amplitude and
phase-shift fields [KA08]. We provide painting interfaces
to design both of these fields similar to that provided for
layer field construction.

The amplitude field allows modifying the magnitude of
the local deformations depending on the space. One can
bend an object by increasing the local deformation on one
side and reducing it on the other side as shown in Figure 5.
We define an amplitude field as being a smooth scalar field
over the model in which all vertices have values ranging
over [–1, 1]. To design this, the user first selects red (value
1), black (value 0), or blue (value –1) and then paints on
the model with the selected color using the three painting
tools. When a vertex has an amplitude field value As, the

system modifies a deformation chart value c as c´ = cAs.
Thus, when As = 1, the system does not change the original
deformation rate. When As = 0, the system eliminates the
deformation effect by making the rate = 1. When As = –1,
the system inverts the deformation rate.

The phase-shift field allows the user to vary the timing
of local deformations depending on the position. This field
is useful for representing motion propagating through the
body, such as a swimming motion of a jellyfish or a peris-
taltic movement of a bowel. Figure 6 shows the effect of
this field. In our definition, a phase-shift field is a smooth
scalar field ranging over [0, 1]. The user can design this
field in a way similar to the amplitude field. In this field,
black (value 0) and green (value 1) correspond to the
source and sink of the deformation signals. In the anima-
tion process, the system shifts phases of the deformation
charts according to the specified field as c′(t) = c(t – Ps/vp),
where Ps is the value of the phase-shift field and vp is the
propagation speed specified by the user. The combination
of the phase-shift and amplitude fields is useful for gene-
rating a wavy motion (e.g., crawling snake).

4.4 Stimuli-Response Deformation

In some natural objects, deformation signals are triggered
by environmental stimuli. For example, a snail deforms its
body when something touches it, and the deformation
usually starts at the contact point. ProcDef can easily emu-
late such stimuli–response phenomena. Here, we show an
example of stimuli–response interaction (Fig. 7).

(a)

(b)

(c)

(d)

(e)

Figure 7: Stimuli–response interactions. The deformation
pattern is specified beforehand (a). When the user touches
the object (c), a deformation signal arises from the touched
point (d). We visualize excited regions in red (e).

Before animating an object, the user sets the propagation
speed vp and damping magnitude Dm of a deformation sig-
nal, and specifies a deformation pattern using the deforma-
tion charts (Fig. 7(a)). In the animation process, the system
allows the user to touch the object by mouse clicking (Fig.
7(b)). When the user touches the object, the system con-
structs a distance field from the touched point over the
object, and then propagates the deformation signal along
the distance field; the system dynamically constructs an
amplitude and phase shift for local regions according to the
distance field. When a vertex has a normalized distance
field value d, we define its phase-shift value as Ps = d, and
amplitude value as As = Dm

-d; larger phase shift and smaller

(a) (b)
(e)

(d)

(c)

Figure 5: Bending effect due to an amplitude field. A bar
model and its orientation field are shown in (a). The user
constructs an amplitude field (c) with the painting inter-
faces (b). The amplitude field efficiently bends the target
model (d) and (e). The expansion rate in the primary
orientation is ×1.5 in (d) and ×1/1.5 in (e). Deformed
regions are highlighted in red (contraction) or light blue
(expansion).

(a) (b) (c)
t0 t1 t2 t3 t4

t0 t1 t2 t3 t4
Figure 6: Deformation propagation due to a phase-shift
field. The user constructs a phase-shift field (b) with a
painting interface (a) and sets the deformation chart for
the primary direction (c). The bottom row shows the se-
quential poses at times t0, t1, t2, t3, and t4 in (c). Contracted
and expanded regions are highlighted in red and light
blue, respectively.

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

magnitude are applied to distant locations. A stimulus re-
sponse is not a cyclic motion, so the system sweeps the
deformation charts only one cycle. This simple framework
successfully emulates deformations triggered by external
stimuli (Fig. 7(c) and (d)).

5. Implementation Detail

This section explains our algorithm that synthesizes global
motions from local deformations. An object is represented
by a volumetric tetrahedral mesh. We construct overlap-
ping local regions Ni at each vertex xi by connecting the
immediate (1-ring) neighborhood. The deformation of each
local region Ni at time t is defined by the user-specified
linear transformation Ti(t).

Our algorithm is based on LSM [RJ07]; we first apply
shape matching to all regions and blend the results to ob-
tain smoothed goal positions gi of vertex xi, and then pull
vertices to their goal positions. The main differences be-
tween LSM and our approach are as follows. While LSM
used the original lattice as a rest state, we transform each
local region Ni of the original tetra mesh by Ti and use the
deformed shape as a rest state (Fig. 2). Another difference
is the use of the tetrahedral mesh instead of a regular lattice.
In the lattice representation that embeds an actual model,
outer particles of a lattice are usually outside of the model,
and thus many regions do not fit inside the actual model.
Designing global motions by indirectly controlling such
unfitted regions is difficult and unintuitive. In our approach,
the tetrahedral mesh, in which all local regions are inside
the actual model, allows directly and intuitively specifying
local deformations.

Unfortunately, a fast summation operator of fastLSM is
not available in our case, since constructing a hierarchical
structure for the fast summation in a tetra mesh is difficult.
Note that the benefits of the fast summation would not be
significant even if it were available, since we use only
small local regions (1-ring neighborhood).

Finding goal position by shape matching: We denote
the mass of the ith vertex by mi. To ensure that vertices
belonging to many regions are not weighted more than
others, we use modified vertex masses, im~ = mi /|Ni|, for
shape matching, where |Ni| is the number of vertices in Ni.
For each local region Nr, [RJ07; MTHG05] find the best-
fitting rotation matrix Rr that minimizes

()∑
∈

−−−
rr i

riririm~
N

200)()(argmin cxcxR
R

, (2)

where xi
0 and xi are vertex positions of the undeformed

mesh and the current deformed mesh, respectively, and cr
0

and cr are the mass centers of Nr of the undeformed and
current mesh,

∑∑∑ ∈∈∈
===

rrr i iri ii
r

ri ii
r

r m~M,m~
M

,m~
M NNN

xcxc 11 00 . (3)

In our case, we use the local shape deformed by the linear
transformation Tr(t) as the rest configuration,

()∑
∈

−−−
rr i

ririrrim~
N

200)()(argmin cxcxTR
R

 . (4)

The best-fitting rotation matrix Rr can be estimated using
the rotation part of

3300))(()(×

∈

∈−−≡ ∑ RcxTcxA T

N
rirri

i
ir

r

m~ . (5)

We can obtain the rotation matrix Rr via the polar decom-
position Ar = RrSr, where Sr is a symmetric matrix

rrr AAS T= . Given Rr, cr, and cr
0, we estimate the goal

position of the ith vertex in the local region Nr as,

rrrirri i N∈+−= ccxTRx)(00 . (6)

Finally, we obtain the goal positions by blending the
shape- matching results of all local regions,

∑
∈

+−=
ki

iikii
k

k || NN
))((1 00 ccxTRg . (7)

To accelerate computation, we precompute Mr and cr
0 and

apply a warm start [RJ07] when computing
rr AAT .

Iterative approach for stiffness control: The original
LSM modifies the size of local regions to control the stiff-
ness. However, this stiffness control is not applicable to
our method for the following reason. We assume that a
local region is uniformly deformed by a single linear trans-
formation. Thus, a large local region would contain large
errors and induce inappropriate global deformations. De-
forming large local regions nonuniformly may be possible,
for example, with multiple linear transformations. Howev-
er, this requires the same local-to-global deformation as-
sembly to calculate the nonuniform deformation of a large
region, which is too costly. We therefore control the stiff-
ness by repeatedly applying shape matching to small local
regions.

When calculating the goal position, we first apply shape
matching to the current animated shape xi, to obtain the
goal position g0

i. Next, we use the obtained g0
i as the target

shape and apply the shape matching to g0
i to obtain g1

i. We
can iteratively calculate the gN

i and use them as the goal
shape. N is a user-defined parameter. For a larger value of
N, a force applied on a vertex affects vertices farther away,
resulting in stiffer deformations (Fig. 8). Note that the
computational cost is proportional to N.

Dynamics: When the goal positions are obtained, we up-
date the vertex positions xi and velocities vi as described by
[MHTG05],

(c) N = 15(b) N = 6(a) N = 1

Figure 8: Stiffness control by iteration. We fix the center of
a worm in the air. Each figure shows the rest global shape
with different iteration size N.

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

i

ext
iii

ii m
th

h
tttht)()()()()(fxgvv +

−
+=+

 (8)

)()()(hththt iii ++=+ vxx , (9)
where h is the time step of the simulation and fi

ext is the
external force applied to the i-th vertex. We also apply the
damping model introduced by [MHHR06; RJ07].

6. Results and Discussion

ProcDef supports general deformations that are induced by
muscular tissues and it covers a large variety of possible
motions. Figures 1 and 9 show swimming jellyfish and
crawling worms designed with ProcDef. The user can easi-
ly design these animations by setting the orientation field
and the three deformation charts. Our phase-shift field
supports the design of deformation propagation effects
(Figs. 1(c) and 9(a)). We set the amplitude field to create a
bending motion of the worm in Figure 9(c) and 9(e). Figure
10 shows scenes containing many moving objects. In these
examples, the system computes both the deformations and
collision avoidances between objects in real time. Note that
these characters have not been frequently used in video
games so far, because it was difficult and costly to design
and compute their motions. We hope our method can make
such currently unpopular characters to be heavily used in
the future.

Our system is also useful for animating organs. We pre-
pared a heart ventricle model and defined its orientation
field as described by [TAI*08]. The primary directions of
the orientation field are aligned in a spiral form and the
secondary directions are oriented in the thickness direc-
tions of the ventricular wall (Fig. 11(a)). We then specify
the deformation charts to make the local regions contract
along the primary directions and expand in the secondary
directions (Fig. 11(b)). These parameters generate highly
realistic twisting motions of the heart (Fig. 11(c)). We also
designed animations of a bowel. We defined a ring-shaped
orientation field (Fig. 11(d)) and deformation charts (Fig.
11(e)). We then propagate deformation signals to generate
peristaltic motions (Fig. 11(f)). Figure 11(g) highlights the
deformation signals; red and light blue indicate contrac-
tions and expansions, respectively, in the primary orienta-
tion. Since these organ animations are computed in real
time on a standard PC and the user can interact with the
model, we believe ProcDef will be a useful tool for medi-
cal applications such as surgery simulations or electronic
charts.

Finally, Table 1 summarizes the performance of our cur-
rent implementation for each scene in this paper. All tim-
ings are generated on a 2.4-GHz Intel Core 2 Duo CPU.

7. Conclusions

In this paper, we presented ProcDef, a new rig-less anima-
tion design framework for flexible objects. The key con-
cept is to design the global motions by controlling local

deformations. ProcDef permits designing animations of
flexible organic objects that have been difficult to be dealt
with by skeleton- or keyframing-based approaches. Proc-
Def also allows interactively adding external forces and
stimuli during animation. We provided an efficient scheme
for designing local deformation patterns by setting charts
and volumetric fields. We applied the shape-matching me-
thod to synthesizing motions induced by local deforma-
tions robustly and efficiently.

One limitation of our method is the representation of
stiffness. Although we introduced an iterative method for
stiffness control, its computational cost is linearly propor-
tional to the iteration size N. Development of a more so-
phisticated stiffness model remains an item for future work.
Another item for future research is inverse animation de-
sign. Currently, we control local deformations, and a glob-
al motion only emerges afterward. Allowing a designer to
set a global motion and to have the local deformation con-
figurations computed automatically would be appealing
and useful. We would also like to combine ProcDef with
skeleton- or keyframing-based frameworks for designing
more complicated animations.

(e)(d)

(a) (c) Viewed from top

(b)

Figure 9: Crawling worms. We construct an orientation
and phase shift field on a worm model (a) and set deforma-
tion charts (b) to create a crawling motion (d). We can also
design bending motions(e) by setting an amplitude field (c).

Figure 10: Multiple moving objects: 31 swimming jelly-
fishes (left) and 101 short worms (right).

model Figure #Vertices
(#Regions)

#Models Iteration N Time(msec)

Jellyfish Fig. 1 854 1 2 4.37
Worm Fig. 8 470 1 6 5.04

Jellyfishes Fig. 10left 315 31 1 31.64
Worms Fig. 10right 73 101 1 34.01
Heart Fig. 11 a-c 1302 1 6 14.79
Bowel Fig. 11 d-g 1576 1 6 17.49

Table 1: Performance of ProcDef. The time row shows the
timings (millisecond) for computing local deformations Ti,
global motions, and collision avoidance, but for rendering.

T. Ijiri, K. Takayama, H. Yokota, & T. Igarashi / ProcDef: Local-to-global Deformation

© 2009 The Author(s)
Journal compilation © 2009 The Eurographics Association and Blackwell Publishing Ltd.

Acknowledgements. We thank Dr. Kazuo Nakazawa, Prof.
Takashi Ashihara and Dr. Ryo Haraguchi for their helpful
comments and kindly providing the heart model (Fig. 11).
This paper was funded in part by Adobe Systems Inc. and
JSPS research fellowship.

References

[AKS*04] AMANO A., KANDA K., SHIBAYAMA T., KAMEI Y.,
MATSUDA T.: Model Generation Interface for Simulation of
Left Ventricular Motion. IEEE EMBC. 2004, 3658-3661.

[Barr84] BARR, A. H. Global and Local Deformations of Solid
Primitives, Computer Graphics 17, 3(1984), 21-30.

[BS08] BOTSCH, M., SORKINE, O.: On linear variational surface
deformation methods. IEEE TVCG, 14, 1(2008), 213-230.

[Bur] BURTON E.: Sodaplay. www.sodaplay.com/.
[CN02] COMBAZ J., NEYRET F.: Painting Folds Using Expansion

Textures. In Proc. Pacific Graphics 2002, 176–182.
[CN06] COMBAZ J., NEYRET F.: Semi-interactive Morphogenesis.

In Proc. Shape Modeling International 2006, 35.
[EHW*08] ETO K., HAMASAKI M., WATANABE K., KAWASAKI Y.,

MATSUO Y., NISHIMURA T.: Modulobe: A New 3D Model Crea-
tion Platform for Complex Motion Design. In Proc. CCASNS
2008.

[Fal] FALCO M.: Springs World 3D. www.sw3d.net.
[GM97] GIBSON S. F., MIRTICH B.: A Survey of Deformable Mod-

els in Computer Graphics. Tech. Rep. TR-97-19, Mitsubishi
Electric Research Laboratories, Cambridge, MA.

[IYKI08] IJIRI T., YOKOO M., KAWABATA K., IGARASHI T.: Sur-
face-based Growth Simulation for Opening Flowers. In Proc.
Graphics Interface 2008, 227–234.

[KA08] KASS M., ANDERSON J.: Animating Oscillatory Motion
with Overlap: Wiggly Splines. ACM Trans. Graph. 27, 3(2008).

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M., GROSS
M.: Meshless Deformations Based on Shape Matching. ACM
Trans. Graph. 24, 3(2005), 471–478.

[MHHR06] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLFF
J.: Position Based Dynamics. In Proc. VRIPhys 2006, 71–80.

[NMK*05] NEALEN A., MÜLLER M., KEISER R., BOXERMAN E.,
CARLSON M.: Physically Based Deformable Models in Comput-
er Graphics. Computer Graphics Forum, 25, 4(2005), 809–836.

[RJ07] RIVERS A., JAMES D. L.: FastLSM: Fast Lattice Shape
Matching for Robust Real-Time Deformation. ACM Trans.
Graph. 26, 3(2007), 82.

[RBC03] ROLLAND A.-G., BANGHAM J. A., COEN E.: Growth
Dynamics Underlying Petal Shape and Asymmetry. Nature, 422,
161–163.

[Sor06] SORKINE, O.: Differential representations for mesh
processing. Computer Graphics Forum, 25, 4(2006), 789–807.

[SOG08] STEINEMANN D., OTADUY M., GROSS M.: Fast Adaptive
Shape Matching Deformations. In Proc. SCA 2008, 87–94.

[SSBT08] STUMPP T., SPILLMANN J., BECKER M., TESCHNER M.:
A Geometric Deformation Model for Stable Cloth Simulation.
In Proc. VRIPHYS 2008, 13–14.

[TAI*08] TAKAYAMA K., ASHIHARA T., IJIRI T., IGARASHI T.,
HARAGUCHI R., NAKAZAWA K.: A Sketch-based Interface for
Modeling Myocardial Fiber Orientation that Considers the
Layered Structure of the Ventricles. J. Physiol. Sci. 58, 7(2008),
487–492.

[TOII08] TAKAYAMA K., OKABE M., IJIRI I., IGARASHI T.: Lapped
solid textures: filling a model with anisotropic textures. ACM
Trans. Graph. 27. 3(2008).

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically deformable models. In Proc. ACM SIGGRAPH ’87,
205–214.

[TO99] TURK G., O’BRIEN J. F.: Shape Transformation Using
Variational Implicit Functions. In Proc. ACM SIGGRAPH ’99,
335–342.

[WSSH04] WATANABE H. SUGANO T., SUGIURA S., HISADA T.:
Finite Element Analysis of Ventricular Wall Motion and Intra-
Ventricular Blood Flow in Heart with Myocardial Infarction.
JSME. 47, 4(2004). 1019–1026.

(a) (b)

LV RV

LV RV

(c)

(d) (g)(e) (f)
Figure 11: Animations of a heart and an S-shaped bowel. LV and RV indicate the left and right ventricles of the heart. We
show the representative poses of the heart motion in the top row of (c). The bottom row of (c) is an overhead view of the
sliced heart model. When beating, the left ventricle (LV) wall strongly thickens to reduce the size of the left ventricle (c).

