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Figure 1: (Left) Quadrangulations of N-sided patches using our algorithm, where 2≤ N ≤ 6. Our algorithm is guaranteed to
successfully quadrangulate N-sided patches with arbitrary numbers of edge subdivisions specified at the patch boundary. (Right)
Integration of our algorithm into the UI framework of Takayama et al. [TPSHSH13b] to efficiently retopologize triangle meshes.

Abstract

We propose an algorithm to quadrangulate an N-sided patch (2 ≤ N ≤ 6) with prescribed numbers of edge
subdivisions at its boundary. Our algorithm is guaranteed to succeed for arbitrary valid input, which is proved
using a canonical simplification of the input and a small set of topological patterns that are sufficient for supporting
all possible cases. Our algorithm produces solutions with minimal number of irregular vertices by default, but
it also allows the user to choose other feasible solutions by solving a set of small integer linear programs. We
demonstrate the effectiveness of our algorithm by integrating it into a sketch-based quad remeshing system. A
reference C++ implementation of our algorithm is provided as a supplementary material.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Converting a triangle mesh into a coarse quad mesh with a de-
sired mesh connectivity is an important step in many produc-
tion pipelines, especially in the context of movies and video
games. The process is often called retopology. Algorithms for

automatic generation of quad meshes incorporating sparse
user constraints such as alignment of edges [BZK09,ILS∗11]
and singularities [MPKZ10] have been studied exten-
sively [BLP∗13]. Other works [BLK11, TPP∗11] consid-
ered the problem of altering the connectivity of existing
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Figure 2: Examples of input and output of our quadrangulation algorithm. Points with blue and yellow fill represent singularities
with valence 3 and 5, respectively. Some of the edge loops are highlighted in green.

quad meshes to align singularities, thus defining a coarse
quad layout. The direct generation of these layouts from
the input surface geometry has also been recently consid-
ered [CBK12, BCE∗13]. Such approaches are implemented
in several commercial 3D modeling tools [Pil13, Pix13].

However, most of these methods involve global optimiza-
tion processes that are computationally expensive. Tweaking
their parameters is a time-consuming task, since for each
parameter change the entire quadrangulation has to be regen-
erated. Furthermore, there is no direct intuitive connection
between the user constraints and the resulting mesh topol-
ogy; a local change in the user constraints might generate a
globally different connectivity of quadrilaterals.

For these reasons, many artists today still use rather basic
manual modeling tools for coarse quad remeshing that are
not much different from placing vertices and faces individ-
ually [Pil13, Pix13]. Although these tools provide complete
control over the retopology process, they are difficult to use,
even for experienced artists, and require time-consuming
manual work. For example, it is highly nontrivial to manually
design a pure quad mesh that bridges a gap between two
partially quadrangulated regions of a surface.

To alleviate this difficulty, Takayama et al. proposed an
interactive tool for manual quad remeshing [TPSHSH13b].
Their key idea is to represent a quad mesh as a set of N-sided
patches containing multiple quads inside. The user is allowed
to freely sketch patch boundaries and specify any number
of edge subdivisions at each patch boundary. The system
immediately quadrangulates each patch while inserting singu-
larities inside patches as needed. The quadrangulation of an
N-sided patch with prescribed numbers of edge subdivisions
at the patch boundary is thus fundamental to this system.

While there already exist a few algorithms to solve this
problem [SWZ04, NSY09, YNB∗13, ZHLB13, dOMM13,
PBJW14], none of them provide guarantee to succeed for
arbitrary cases; in particular, these algorithms do not seem to
be able to handle very asymmetric cases where some sides
of the patch are subdivided many times while other sides are
not subdivided at all (see Figure 2 for some examples). This
is rather a serious shortcoming, since the ability to handle
arbitrary cases is a necessary requirement in order to ensure

the flexibility of an artist using the sketch-based retopology
tool [TPSHSH13b].

Takayama et al. [TPSHSH13a] proposed a robust algo-
rithm for quadrangulating 3-sided and 4-sided patches with
arbitrary numbers of edge subdivisions at the patch bound-
ary, and integrated it into their sketch-based retopology sys-
tem [TPSHSH13b]. While their algorithm also uses a pattern-
based approach similar to ours, it does not generalize well
to patches with more than 4 sides, because it classifies the
input into several cases by directly comparing the numbers
of edge subdivisions given to the patch sides, leading to a
significantly large number of cases to be considered already
for 5-sided patches.

In this paper, we propose a more general algorithm for
quadrangulating N-sided patches with 2 ≤ N ≤ 6. Our key
observation is that the initial problem can be reduced into an
equivalent and much smaller problem, which considerably
decreases the number of cases that need to be considered
(Section 2.1). Based on this observation, we provide a com-
plete set of topological patterns that covers all possible inputs,
thus ensuring our algorithm’s generality (Section 2.2). We
then show that the problem of determining whether a certain
topological pattern can satisfy a given input can be concisely
formulated as a small integer linear program (Section 2.3).
We also provide simple ways to explore the space of possible
quadrangulations for the given input (Sections 2.4 and 2.5).
As shown in Figure 1, our algorithm can generate quadrangu-
lations for arbitrary input and proves useful when integrated
into the interactive system by Takayama et al. [TPSHSH13b].
A reference C++ implementation of our algorithm is provided
as a supplementary material.

2. Algorithm

We consider a tessellation of an N-sided patch into a quad
mesh with N corner vertices at the boundary, where 2 ≤
N ≤ 6. A side of the patch is defined as the mesh boundary
between two consecutive corner vertices. The valence of an
interior vertex is defined as the number of its adjacent edges.
The valence of a corner boundary vertex is defined as the
number of its adjacent edges plus two, and the valence of
a non-corner boundary vertex is the number of its adjacent
edges plus one. A vertex with valence four is called a regular
vertex, while a vertex with other valence is called an irregular

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



K. Takayama et al. / Pattern-Based Quadrangulation for N-Sided Patches

4 

1 

3 

3 

1 

2 3 

3 

11 

5 4 

5 

4 

5 16 

7 

1 4 

5 

4 

1 12 

4 

1 1 

2 

1 

1 12 

4 

4 

7 

1 

4 

4 

1 

12 

Figure 3: Examples of maximally reducing the input for 3- and 4-sided patches. After each reduction operation, a pair of sides
get smaller numbers of edge subdivisions, shown in red.

vertex or a singularity. An edge flow or an edge loop is a
sequence of edges that starts from and ends at a singularity
or a patch boundary and goes through regular vertices such
that every pair of consecutive edges does not belong to the
same quad.

The input to our algorithm is the number of edge subdivi-
sions for each side (l0, · · · , lN−1)∈ZN

+ where li corresponds
to the i-th side, and the output is a quad mesh that satisfies
the input with as few singularities as possible. In this paper,
the side indices are always taken modulo N. Figure 2 shows
examples of input and output for the quadrangulation of 3-,
4-, and 5-sided patches.

Note that it is impossible to quadrangulate the input if the
sum of the provided numbers of edge subdivisions, ∑

N−1
i=0 li,

is odd. To see this, consider an arbitrary quad mesh patch
with F faces, Eb boundary edges, and Ei internal edges. Since
every quad has four edges and every internal edge is shared
by two quads, these numbers are related as 4F = Eb + 2Ei,
meaning that Eb must always be even.

Therefore, we assume in this paper that ∑
N−1
i=0 li is even.

Apart from this restriction, it is possible to arbitrarily vary
the numbers of edge subdivisions li, and our algorithm will
efficiently generate a corresponding quad mesh connectivity.

Our algorithm only determines the topological information,
i.e., the mesh connectivity. For visualization purposes in this
paper, we use 2D mesh vertex positions {vi} ⊂ R2 obtained
by the uniform Laplacian smoothing:

argmin
{vi}

∑(i, j)∈E ‖vi−v j‖2 (1)

subject to vi = wi , i ∈ C (2)

where E is the set of edges of the mesh, C is the set of bound-
ary vertices, and wi ∈ R2 is the predefined 2D boundary
position to which the i-th boundary vertex is fixed. In actual
retopology scenarios, these 2D vertex positions are mapped
to 3D surface positions using the parameterization.

2.1. Reducing the input

It is challenging to consider all possible input configurations,
since their number increases exponentially as we increase N.
Our key observation is that the problem can be reduced to an
equivalent, easier subproblem by trimming the patch. This
operation drastically reduces the number of cases we need to
consider to ensure our algorithm’s generality.

Assume an input (l0, · · · , lN−1) where lk−1 and lk+1
are both greater than 1 for some k, and let us define d =
min(lk−1, lk+1)−1. Then, the quadrangulation of the origi-
nal input can be achieved by first quadrangulating another,
smaller input (l′0, · · · , l′N−1) where

l′i =

{
li−d if i = k±1
li otherwise,

and then attaching a d-by-lk regular grid to the k-th side of the
resulting intermediate quadrangulation. We call this operation
trimming, and its inverse padding. The trimming operation
can be repeated until no more trimming is possible, obtain-
ing a maximally reduced input. Figure 3 shows examples of
maximally reducing the input for 3- and 4-sided patches.

Maximally reduced input can be classified into a small
number of cases for N ≤ 6, as shown in Table 1, where α and
β represent arbitrary numbers greater than 1. The requirement
for an input to be maximally reduced is that for all k, at
least one of lk−1 and lk+1 must be 1. Note that the cases are
classified modulo rotations and inversions, e.g., (α,1,1) ≡
(1,α,1) ≡ (1,1,α). Doublets, i.e., patches with N = 2, are
handled separately (Section 2.6).

2.2. Topological patterns

Figure 4 shows a complete set of topological patterns that
covers all cases of maximally reduced input. The blue and
purple arrows with associated symbols x and y shown on top
of some patterns are parameters of these patterns, indicating
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Figure 4: A complete set of topological patterns that covers all cases of maximally reduced input. Vertices with red borders
represent patch corners. The number of edge subdivisions is depicted for each patch side if it is not 1.

N Input Condition Pattern

3 (α,1,1) α = 2 0
α = 4+2x 1

4 (1,1,1,1) 0
(α,1,1,1) α = 3+2x 2 (x = 0),3
(α,β,1,1) α = β 1

α = β+2+2x 4

5 (α,1,1,1,1) α = 2 0
α = 4+2x 2

(α,β,1,1,1) α = β+1 1
α = β+3+2x 3

6 (1,1,1,1,1,1) 0 (x = 0)
(α,1,1,1,1,1) α = 3+2x 2 (y = 0)
(α,β,1,1,1,1) α = β 1

α = β+2+2x 3
(α,1,1,β,1,1) α = β 0

α = β+2+2x 2

Table 1: Exhaustive set of rules that covers all valid
maximally-reduced inputs (3≤ N ≤ 6). For each input, the
corresponding conditions cover all the valid values of α and
β under the assumption that the total number of edge subdi-
visions is even.

insertion of edge flows at these locations x and y times (x≥ 0
and y≥ 0). Figure 5 shows examples of inserting edge flows
into some patterns.

4-sided, pattern 1 6-sided, pattern 3 

𝑥
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Figure 5: Examples of inserting edge flows into some pat-
terns.

Table 1 shows that any possible maximally reduced input
can be quadrangulated using at least one of the patterns. As an

example, let us consider the input of the form (α,1,1). Only
inputs with α being even can be quadrangulated, since the
sum of the numbers of edge subdivisions has to be even. We
now consider two cases. For the case where α = 2, we apply
pattern 0 directly. For all the other cases where α = 4+2x,
we apply pattern 1. We consider all the other forms of input
in a similar manner. In some cases, different patterns can
be applied to the same input; we discuss how to select a
pattern with minimal number of singularities and how to let
the user choose other feasible patterns in Sections 2.3 and
2.5, respectively.

Strategy for designing patterns. We designed the patterns
such that a minimal number of singularities of valence 3 or
5 are introduced. We first considered the case with one side
having arbitrary number of edge subdivisions, and all the
other sides having only one edge, i.e., (α,1, · · · ,1). Then we
considered the case with two adjacent sides having arbitrary
numbers of edge subdivisions, and all the other sides having
only one edge, i.e., (α,β,1, · · · ,1). While some of the pat-
terns seem to have similar topological structures in common,
we have not yet found a way to automatically generate these
patterns for a given N; we designed them manually using the
connectivity editing operators [PZKW11].

2.3. Pattern selection formulated as ILP

So far we have shown that it is possible to quadrangulate
N-sided patches with arbitrary numbers of edge subdivisions
by first maximally reducing the input and then choosing one
of the proposed patterns. However, as shown in Figure 6,
this procedure may lead to the selection of an unnecessarily
complex pattern with more singularities than needed. To se-
lect the pattern with a minimal number of singularities, we
look for all feasible patterns and pick the one with the fewest
singularities.

We observe that each pattern defines a simple linear rela-
tion between the input (l0, · · · , lN−1) and the parameters, i.e.,
the amount of padding of the i-th side pi and the number of
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Figure 6: An example of quadrangulating a 3-sided patch where maximally reducing the input leads to the selection of pattern 1
which is more complex than pattern 0 satisfying the same input.

edge flow insertions x and y; see Figure 7 for some examples.
This relation can be written in matrix form as

Ax = b, (3)

where A is an N×M matrix (constant per pattern) with
M being the number of the pattern’s parameters, x an M-
dimensional vector representing the pattern’s parameters (un-
known), and b an N-dimensional vector determined by the
input (l0, · · · , lN−1) and the pattern. An important require-
ment is that each parameter xi ∈ x must be a non-negative
integer. A pattern is then feasible if Eq. (3) has non-negative
integer solutions. This can be formulated as an integer linear
program (ILP):

maximize c>x (4)

subject to Ax = b (5)

x≥ 0,x ∈ ZM (6)

where c is an M-dimensional vector representing the objec-
tive we wish to maximize, which will be discussed later. The
existence of solutions to this ILP means that the pattern is fea-
sible for the input. Since the number of variables M is small
(at most 10 in our case), it can be solved very quickly. To
account for the permuted versions of the input (Section 2.1),
we test if the pattern is feasible for all the permuted versions
of the input. We further perform this test sequentially for each
of the patterns in the ascending order of index (i.e., patterns
with fewer singularities are tested first), and as soon as a
feasible solution is found, we use the corresponding pattern,
parameter, and permutation to generate the quadrangulation
accordingly. Our pattern design (Section 2.2) ensures that at
least one solution will be found during this process.

The ILP often has multiple solutions since N ≤M. This
means that there are multiple parameters for the same pattern
satisfying the input. In the next section, we show how to
interactively explore the solution space.

2.4. Adjusting pattern parameters

As shown in Figure 8, some patterns accommodate additional
edge flows other than those depicted in Figure 4. These are
treated as additional variables in the ILP. Since the differ-
ence between the number of variables and the number of
constraints M−N is always less than 5, the space of feasible
solutions is at most 4-dimensional.

The default parameters are computed by maximizing the
sum of the paddings ∑

N−1
i=0 pi. This is achieved by setting

c j = 1 if the corresponding variable represents padding, and
c j = 0 elsewhere. To let the user freely and intuitively explore
the space of feasible solutions, we propose a simple user
interface where the user can adjust a certain parameter while
keeping changes to other parameters minimal (Figure 9 top).
Let us denote the current and new sought parameters as x̃
and x, respectively, and suppose we want to increase the k-th
parameter xk. First, we specify an additional constraint as

xk ≥ x̃k +1. (7)

Then, we conceptually set the objective as

minimize
M−1

∑
j=0
|x j− x̃ j|. (8)

To handle this form of objective in ILP, we follow the con-
ventional approach: we introduce auxiliary variables y =
(y0, · · · ,yM−1), set the objective as

minimize
M−1

∑
j=0

y j, (9)

and specify additional constraints as

y j ≥ −(x j− x̃ j) (10)

y j ≥ x j− x̃ j (11)

for all j ∈ {0, · · · ,M−1}. This doubles the number of vari-
ables in the ILP, but it is still small and can be solved quickly.
When the space of feasible solutions becomes empty due to
the additional constraint (7), the system tells the user that the
requested parameter adjustment is impossible.

Notice that the coefficient matrix for pattern 4 for 4-sided
patches shown in Figure 7 contains two pairs of columns that
are identical: the first and the third columns (corresponding
to p0 and p2), and the second and the fourth columns (corre-
sponding to p1 and p3). These parameters with the identical
columns in the coefficient matrix affect the number of edge
subdivisions at the patch boundary in the same manner. Ad-
justing these parameters while keeping their sum constant can
be seen as topologically translating singularities (Figure 9
middle). By mapping the user’s dragging of the mouse to the
adjustment of these parameters, we provide an intuitive inter-
face for translating singularities. The number of additional
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Figure 7: Linear relations between the input and the parameters for four patterns.

edge flows, qi, introduced in Figure 8, is indexed in such a
way that its corresponding column in the coefficient matrix
is identical to that of the padding parameter pi, enabling a
similar operation of topologically translating singularities
(Figure 9 bottom).
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Figure 8: Additional edge flows for some patterns which are
treated as additional variables in ILP.

2.5. Switching between patterns

As mentioned in Section 2.2, different patterns may satisfy
the same input (Figure 10 left). Furthermore, the same pat-
tern with different permutations may satisfy the same input
(Figure 10 middle). We can offer the user further flexibility
by allowing her to switch among these feasible patterns and
permutations. In addition, we can add more patterns to the al-
gorithm that are redundant for ensuring the algorithm’s gener-

increase 𝑥 
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Figure 9: A simple user interface for adjusting parameters.
(Top) The user can increase or decrease a selected parame-
ter. (Middle and bottom) Exchanging values between certain
pairs of parameters amount to topologically translating sin-
gularities.

ality, but useful for providing the user with more options; for
example, Figure 10 right shows pattern 2 for 3-sided patches
(as proposed by Takayama et al. [TPSHSH13a]) which can
be optionally chosen by the user.

2.6. 2-sided patches

pattern 0 pattern 1 

𝑥 𝑦 
𝑥 

𝑦 The maximally reduced in-
put for doublets (2-sided
patches) can only take the
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3-sided, 

pattern 2 

Figure 10: Switching patterns and permutations. We can
allow the user to choose (left) different patterns and (middle)
different permutations within the same pattern. (Right) We
can also incorporate additional patterns into the algorithm
to provide the user with more options.

form (A,1). Due to our as-
sumption of valid input, A must be odd, i.e., A = 3 + 2x,
which is covered by pattern 0 (see inset). An exceptional
singular case that cannot be handled by pattern 0 is the input
of (2,2), which is covered by pattern 1.

3. Results

We implemented our algorithm using OpenMesh [BSBK02]
for handling the mesh connectivities and lp_solve [BDE∗10]
for solving the ILP. Note that the maximal reduction pro-
cedure described in Section 2.1 is only used to prove the
generality of our algorithm. A reference C++ implementa-
tion of our algorithm is provided as a supplementary material.

Figure 1 (left) shows a few examples of quadrangulations
generated by our algorithm. The computation time for gener-
ating a mesh connectivity of this level of density is at most
around 30 ms on an Intel Core i7 2.67GHz CPU, where the
steps of the ILP solve and the Laplacian energy minimiza-
tion are equally dominant. Figure 1 (right) shows two results
created using our algorithm integrated into Takayama et al.’s
system [TPSHSH13b]. The modeling sessions took about 70
and 40 minutes for the Bear and the Humanoid models, re-
spectively. While the design process is inherently artistic and
exploratory, making quantitative comparisons difficult, ex-
isting manual retopology tools [Pil13, Pix13] tend to require
roughly twice or more time to achieve similar results.

Comparisons. Figure 11 shows comparisons between
Yasseen et al.’s results (top row), reported in Fig. 9 of their pa-
per [YNB∗13] and our results (bottom row). Our results have
fewer singularities (left) or the same number of singularities
with a different layout (middle). On the top right example,
the sum of the input numbers of edge subdivisions is odd, and
their algorithm necessarily introduces a triangular element to
handle this invalid input. If we change the input slightly by
incrementing the number of edge subdivisions at the top right
side, our method produces a topologically similar result using
pattern 3 for 5-sided patches (bottom right). Most importantly,
our method is guaranteed to generate quadrangulations with
known number of singularities (determined by the predefined
patterns) for arbitrary input. To the best of our knowledge,
this guarantee was never provided by any previous algorithm.

6 

15 5 

8 

6 

5 4 

3 

6 

15 5 

8 

6 

5 4 

3 

4 

3 

12 4 

4 

4 

3 

13 4 

4 

Figure 11: Comparisons between Yasseen et al.’s re-
sults [YNB∗13] (top row) and ours (bottom row).

Our algorithm, as opposed to previous ones [YNB∗13,
PBJW14], allows singularities on the patch boundary. While
this might be problematic for some applications, it is a key
feature for our main target application of sketch-based quad
meshing, since we want to always generate a quad mesh for
every valid input specified by the user, including the cases
with no subdivision on some sides of the polygon.

4. Limitations and future work

Our method generates only a subset
of possible quadrangulations satisfying
the same input because of the use of
predefined patterns. If the user wants a
certain quadrangulation which cannot
be represented by any of these patterns (e.g., as in the inset
showing a 2-sided case), she has to manually split the poly-
gon into separate parts. Enlarging the solution space of our
method by creating more complex patterns is left as future
work.

Designing patterns for cases with N ≥ 7 is another subject
for future work. All possible cases of maximally reduced
input for N ∈ {7,8} are as follows:

N Maximally-reduced input

7 (α,1,1,1,1,1,1),(α,β,1,1,1,1,1),
(α,1,1,β,1,1,1),(α,β,1,1,γ,1,1)

8 (1,1,1,1,1,1,1,1),(α,1,1,1,1,1,1,1),
(α,β,1,1,1,1,1,1),(α,1,1,β,1,1,1,1),
(α,1,1,1,β,1,1,1),(α,β,1,1,γ,1,1,1)

Some of these cases involve three sides having more than one
edge subdivisions (i.e., α, β, and γ) which may complicate
the pattern design and drastically increase the number of pat-
terns required. We have not yet attempted to manually design
patterns for these cases, because the practical relevance did
not seem worth the effort. An automatic algorithm for gener-
ating the minimal set of required patterns for arbitrary N is
an interesting direction for future work.

c© 2014 The Author(s)
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Sophisticated geometric optimization could be utilized to
further enhance the usability of our algorithm. For example,
the uniform Laplacian smoothing used in our implementation
causes flipped quadrilaterals when the shape of the patch is
not convex. This issue would be solved by using one of the
recent bijective mapping techniques [SHF13]. We could also
take the geometric features of the 3D shape being retopolo-
gized into account, or consider the geometric qualities of the
resulting quad mesh when choosing the best quadrangulation
in the feasible set, similar to Peng et al.’s approach [PBJW14].

Lastly, generalization of our approach to hexahedral mesh
generations is an interesting and challenging direction for
future work. This is highly relevant especially in the context
of finite element analysis. One possible approach would be
to let the user decompose the model’s volume into a set
of volumetric patches of different types, such as cuboids,
triangle prisms and triangular pyramids. The user would then
be able to specify the number of edge subdivisions along each
ridge line of the patches, based on which the system would
hexahedralize the interior of each patch. Figure 12 shows
a few topological patterns for such volumetric patches. It
seems highly challenging to find a complete set of topological
patterns that cover all possible configurations.

Figure 12: An incomplete set of topological patterns for
volumetric hexahedral mesh generation.
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