Mathematics and Implementation of Computer Graphics Techniques 2015

### **Boundary Aligned Smooth 3D Cross-Frame Field**

### Jin Huang, Yiying Tong, Hongyu Wei, Hujun Bao SIGGRAPH Asia 2011

Kenshi Takayama Assistant Prof @ National Insitute of Informatics

takayama@nii.ac.jp

1<sup>st</sup> round 25 July 2015

## Background: 2D Frame Field & Quad Meshing



- 2D Frame Field
   Auto-computed
- UV Parameterization
   Auto-computed



### Background: 3D Frame Field & Hex Meshing



- 3D Frame Field
   Heuristic
- UVW Parameterization
   Auto-computed

"Meta-Mesh" to define 3D Frame Field



UVW Parameterization = Hex Mesh

CubeCover - Parameterization of 3D Volumes [Nieser, Reitebuch, Polthier, SGP11]

### Definition of 3D Frame

• Don't care about orientation / ordering of axes

$$R_{1} \qquad R_{2} \qquad R_{3} \qquad R_{4} \qquad \cdots$$

$$\cdot [R_{1}] = [R_{2}] = \cdots = \{R_{1}, R_{2}, \dots, R_{24}\}$$

- Question: How distant is  $[R_a]$  from  $[R_b]$ ?
- Key insight:  $h(s) \coloneqq s_x^2 s_y^2 + s_y^2 s_z^2 + s_z^2 s_x^2$ ,  $s \in S^2$ 
  - Invariant under sign flip / axis reordering!





Integral over an entire sphere → Spherical Harmonics!

### **Basics of Spherical Harmonics**

• Something like Fourier series on sphere -3 -2 -1 0 1 2

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{f}_{l}^{m} Y_{l}^{m}(\theta,\phi)$$

• Orthonormality:

$$\int_{s \in S^2} Y_l^{m_1}(s) Y_l^{m_2}(s) ds = \begin{cases} 1 & \text{if } m_1 = m_2 \\ 0 & \text{otherwise} \end{cases}$$



3

m

### Frame represented by SH

#### h(s) "Frequency" unaffected by rotation:

$$h(s) = -\frac{2\sqrt{\pi}}{15} \left( Y_4^0(s) + \sqrt{\frac{5}{7}} Y_4^4(s) + 16\sqrt{\pi} Y_0^0(s) \right) \stackrel{\text{simplify}}{\longrightarrow} h(s) \coloneqq \sqrt{7} Y_4^0(s) + \sqrt{5} Y_4^4(s)$$

 Frame represented as SH coeffs for band l = 4 (i.e. 9-vector) :

- $f_{[R]} \coloneqq (\lambda_{-4}, \lambda_{-3}, \lambda_{-2}, \lambda_{-1}, \lambda_0, \lambda_1, \lambda_2, \lambda_3, \lambda_4)$  $\hat{h} = \hat{f}_{[I]} = (0,0,0,0,\sqrt{7},0,0,0,\sqrt{5})$
- Coeffs mapped by some 9x9 matrix  $\hat{R}$ :
- Distance between  $R_a \& R_b$ :

 $h(R^{T}s) =: f_{[R]}(s) = \sum \lambda_{m} Y_{4}^{m}(s)$ 

 $\hat{f}_{[R]} = \hat{R} \ \hat{h}$ 





# Computing $9x9 \hat{R}$ from 3D rotation R

- Not immediately obvious
- Insight: Obvious for certain cases:  $R_Z^{\theta} \& R_X^{\pi/2}$ 
  - (Not sure...)

Rotation about Z axis by  $\theta$ 

- → Represent rotation by ZYZ Euler angle
  - $R(\alpha,\beta,\gamma) \coloneqq R_Z^{\gamma} \left( R_Y^{\beta} \right) R_Z^{\alpha} = R_Z^{\gamma} \left( R_X^{-\frac{\pi}{2}} R_Z^{\beta} R_X^{\frac{\pi}{2}} \right) R_Z^{\alpha}$

• 
$$\hat{R}(\alpha,\beta,\gamma) = \hat{R}_{Z}^{\gamma} \left( \hat{R}_{X}^{-\frac{\pi}{2}} \ \hat{R}_{Z}^{\beta} \ \hat{R}_{X}^{\frac{\pi}{2}} \right) \ \hat{R}_{Z}^{\alpha}$$

## Frame that aligns with boundary surface

Coeff for  $Y_4^0$ 

- Frame [*R*] aligns with:
  - Z axis iff  $\hat{f}_{[R]}(0) = \sqrt{7}$

(Proof in Appendix)

• Surface normal *n* iff  $(\hat{R}_{n \to Z} \hat{f}_{[R]})(0) = \sqrt{7}$ 

• 
$$R_{n \to Z}$$
: Rotation that brings n to Z axis  
 $\alpha = -\operatorname{atan2}(n_y, n_x), \quad \beta = -\operatorname{acos}(n_z), \quad \gamma = 0$ 

### Discretization & Objective

- Tetrahedral mesh over domain  $\boldsymbol{\Omega}$
- Frame var  $\hat{f}_{p_i}$  at center  $p_i$  of every (interior/exterior) triangle TRI<sub>i</sub>
- Piecewise-linear frame field  $\hat{f}$ 
  - Gradient  $\nabla \hat{f}_{\text{TET}_j}$  constant within each tetrahedron  $\text{TET}_j$
- Objective to be minimized:

$$E_{\text{smooth}} \coloneqq \sum_{\text{TET}_{j}} \text{volume}(\text{TET}_{j}) \sum_{m=-4}^{4} \left\| \nabla \hat{f}_{\text{TET}_{j}}(m) \right\|^{2}$$
$$E_{\text{align}} \coloneqq \sum_{\text{TRI}_{i} \in \partial \Omega} \text{area}(\text{TRI}_{i}) \left\| \left( \hat{R}_{n_{i} \to \text{Z}} \, \hat{f}_{p_{i}} \right)(0) - \sqrt{7} \right\|^{2}$$

$$E_{\text{full}} \coloneqq \frac{E_{\text{smooth}}}{\text{volume}(\Omega)^{1/3}} + w_{\text{align}} \frac{E_{\text{align}}}{\text{area}(\partial\Omega)}$$

### Optimization

- Energy quadratic in  $\{\hat{f}_i\} \rightarrow$  Simple Laplace-like least squares <Step 1>
- Problem: Arbitrary  $\hat{f}_i$  doesn't represent rotation!
  - → <Step 2> *Project*  $\hat{f}_i$  to its closest rotation  $R(\alpha_i, \beta_i, \gamma_i)$ 
    - (Not sure how to do it...)
- <Step 3> Using  $\Phi_i \coloneqq (\alpha_i, \beta_i, \gamma_i)$  as initial guess, run *nonlinear optimization* over  $\{\Phi_i\}$ 
  - L-BFGS (solver: ALGLIB, dlib, etc)
  - (Not sure about analytic form of derivative...)

$$\begin{split} \hat{f}_{0} \leftarrow \arg\min_{\hat{f}} E_{f}(\hat{f}) \\ \text{for all rotation } \Phi_{i} &= (\alpha_{i}, \beta_{i}, \gamma_{i}) \text{ do} \\ \Phi_{0,i} \leftarrow \arg\min_{\Phi_{i}} \|\hat{f}_{0,i} - \hat{R}(\Phi_{i})\hat{h}\|^{2} \\ \text{end for} \\ \text{repeat} \\ \text{L-BFGS iteration for } \arg\min_{\Phi} E_{f}(\hat{f}_{[R(\Phi)]}) \\ \text{until } -\frac{\Delta E_{f}}{E_{f}} < 10^{-5} \end{split}$$





# Questions

- Regarding implementation:
  - Expressions for  $\hat{R}_{\rm Z}^{\theta}$  &  $\hat{R}_{\rm X}^{\pi/2}$
  - Projection of  $\hat{f}_i$  to its closest rotation  $R(\alpha_i, \beta_i, \gamma_i)$
  - Analytic derivative of  $E_{\text{full}}$  w.r.t.  $\{\Phi_i\}$
- Possible idea for improvement:
  - Can we sidestep nonlinear optimization by alternating Laplace smoothing and "normalization"?



