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Dual Sheet Meshing:
An Interactive Approach to Robust Hexahedralization
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Figure 1: In our approach, the user interactively designs a set of mutually intersecting surfaces called dual sheets, which is then primalized
by the system to generate an all-hex mesh.

Abstract
The combinatorial dual of a hex mesh induces a collection of mutually intersecting surfaces (dual sheets). Inspired by Campen
et al.’s work on quad meshing [CBK12, CK14], we propose to directly generate such dual sheets so that, as long as the volume
is properly partitioned by the dual sheets, we are guaranteed to arrive at a valid all-hex mesh topology. Since automatically
generating dual sheets seems much harder than the 2D counterpart, we chose to leave the task to the user; our system is equipped
with a few simple 3D modeling tools for interactively designing dual sheets. Dual sheets are represented as implicit surfaces in
our approach, greatly simplifying many of the computational steps such as finding intersections and analyzing topology. We also
propose a simple algorithm for primalizing the dual graph where each dual cell, often enclosing singular edges, gets mapped
onto a reference polyhedron via harmonic parameterization. Preservation of sharp features is simply achieved by modifying the
boundary conditions. We demonstrate the feasibility of our approach through various modeling examples.

CCS Concepts
• Computing methodologies → Mesh models; Mesh geometry models; Volumetric models;

1. Introduction

Methods for generating boundary-aligned high-quality hex meshes
are of high demand for many fields of science and engineering
where numerical analysis of 3D volumetric domains is involved.
One of the major challenges here is to ensure that all the cells in
the mesh are hexahedral (i.e., all-hex), a property frequently re-
quired in practice. Despite the active research in the recent years,
fully automatic generation of high-quality all-hex meshes for gen-
eral shapes is still difficult.

The basic motivation of our work comes from the fact that the
combinatorial dual of a hex mesh induces a structure where many
surfaces (dual sheets) intersect with each other, so by reversing this
process, we should be able to obtain an all-hex mesh by somehow
generating a set of mutually intersecting dual sheets and taking
its combinatorial dual. This idea is directly inspired by Campen
et al.’s work on quad meshing [CBK12, CK14]. Generalizing their
approach to 3D seems difficult, however, because as opposed to the
2D case where dual loops, being 1-manifold, always have the same
cyclic topology, dual sheets, being 2-manifold, can have arbitrarily

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0003-0156-1136


K. Takayama / Dual Sheet Meshing: An Interactive Approach to Robust Hexahedralization

complex surface topologies. This enlarges the search space con-
siderably, and it seems far from straightforward to design what is
analogous to their anisotropic geodesic algorithm.

Our choice is to leave the automatic generation of an optimal
set of dual sheets as an open problem, and instead ask the user to
design the dual sheets through interactive 3D modeling. Our focus
in this work is on the design of a simple and robust system that
can generate all-hex meshes with some amount of manual labor
(Figure 1), which we believe is of a certain value in some context.
Our next choice is to represent dual sheets as zero isosurfaces of
implicit functions, which not only eases the task of creating dual
sheets of various surface topologies from the user’s perspective, but
also greatly simplifies many of the computational steps in the sys-
tem such as finding intersections and analyzing topology. We also
propose a simple algorithm for primalizing the dual graph which
directly maps each dual cell, often enclosing singular primal edges,
to a reference polyhedron via harmonic parameterization. Preserva-
tion of sharp features is trivially handled in this scheme by modify-
ing the boundary conditions. We release our implementation pub-
licly for the sake of reproducibility.

2. Related work

For a general background on hex meshing, please refer to the re-
cent surveys [AFTR15, YZL15]. There are quite some publica-
tions in the engineering and the computational geometry commu-
nities that focus on the dual structure of hex meshes, such as the
Whisker Weaving algorithm [TBM96], the dual cycle elimination
algorithm [MH99, KBLK13] and a proof of existence for a hex
mesh given a boundary quad mesh [Eri14]. These works are gen-
erally either more theoretical or of limited applicability in practice,
however, and to our knowledge, no attempts have been reported so
far on generating the actual geometry of dual sheets and then pri-
malizing them to obtain all-hex meshes as we do in this work.

In the graphics community, one of the two popular ap-
proaches to all-hex meshing is based on volumetric PolyCube map-
ping [GSZ11, HJS∗14, FXBH16]. While being able to offer some
robustness guarantees, this approach inherently limits the class of
hex mesh topologies being supported to those having singulari-
ties only on the boundary surface, consequently limiting the attain-
able quality. The other promising approach is based on the gen-
eration of a smooth octahedral field [HTWB11, RSL16, SVB17]
which guides the construction of an integer-grid map [NRP11] fol-
lowed by tracing integer isolines [LBK16]. This approach is con-
sidered to have the highest potential in achieving the best pos-
sible quality in all-hex meshing by allowing internal singulari-
ties, with a caveat that the process may fail if the field con-
tains inappropriate singularity types, which is an active research
topic [LLX∗12, JHW∗14, LZC∗18]. In contrast to these automated
methods, at the cost of requiring manual user input, our method can
robustly generate all-hex meshes of arbitrary topologies including
internal singularities (except for a few restrictions, see Section 9).

In the context of improving the quality of existing hex meshes,
Gao et al. [GDC15, GPW∗17] also focused on the dual structure
and used sheet-wise operations to reduce the structural complexity
of hex meshes.

(a) (b) (c) (d)

Figure 2: The definition of a dual sheet. An edge of a primal hex
mesh becomes a polygonal face in the dual graph (a), called a dual
face. Each of the “parallel” edges surrounding that primal edge
(highlighted in red) corresponds to a dual face adjacent to that
dual face (b). The set of all dual faces associatively adjacent to
each other forms a 2-manifold surface structure, called a dual sheet
(c). A hex mesh can now be seen as a set of disjoint dual sheets
intersecting with each other (d).

Our spirit in this work is also shared by some prior work on in-
teractive quad remeshing [TPSHSH13, CK14, MTP∗15, JTPSH15,
ESCK16] where the user expresses through intuitive interfaces her
particular application-specific intent that would otherwise not be
captured by automatic algorithms. We believe similar tools for hex
meshing to be valuable, but to our knowledge, no such attempt has
been reported so far in the literature. There are many commercial
packages (e.g., ANSYS [ANS18]) which have tools for decompos-
ing volumes into blocks for hex meshing, but their technical details
are largely unpublished.

3. Dual structure

Let us first introduce some terminology to make the subsequent ex-
planation clear. Consider the combinatorial dual of a hex mesh. An
edge of the hex mesh (a primal edge) becomes a polygonal face in
the dual graph (a dual face) whose number of corners equals the
number of primal hex cells incident to that primal edge (Figure 2a).
We can then identify a set of other primal edges that are “parallel”
to that primal edge (highlighted in red in Figure 2a), each corre-
sponding to a dual face adjacent to the dual face of that primal edge
(Figure 2b). By connecting all the dual faces that are adjacent to
each other, we obtain a 2-manifold surface structure, called a dual
sheet (Figure 2c). Just like a dual loop cannot have open ends in-
side the surface domain [CBK12], a dual sheet cannot have open
boundaries inside the volumetric domain; i.e., it can either have
boundary loops on the boundary surface of the volume, or form a
closed surface inside the volume. The dual graph of a hex mesh can
now be seen as a set of disjoint dual sheets intersecting with each
other (Figure 2d).

In this view, a primal hex cell corresponds to an intersection of
three dual sheets (Figure 3a), called a dual vertex. A primal quad
face corresponds to a segment of the intersection curve of two dual
sheets bounded by two other sheets (Figure 3b), called a dual edge.
A primal edge corresponds to a polygonal subregion of a dual sheet
bounded by other intersecting dual sheets (Figure 3c), called a dual
face. A primal vertex corresponds to a polyhedral subregion of the
volume bounded by intersecting dual sheets (Figure 3d), called a
dual cell.

Boundary elements. An element of the primal hex mesh at
the boundary has an additional dual object associated with the
boundary surface. A polygonal subregion of the boundary surface
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Figure 3: The relationships between elements of primal hex mesh
(yellow) and elements of dual graph (green).

(a) (b) (c)

Figure 4: The definition of dual objects at the boundary surface.

bounded by dual sheets, or equivalently, the intersection of a dual
cell and the boundary surface, is called a boundary dual face (Fig-
ure 4a). Similarly, a segment of the boundary loop of a dual sheet
bounded by two other dual sheets, or equivalently, the intersection
of a dual face and the boundary surface, is called a boundary dual
edge (Figure 4b). Finally, an intersection of boundary loops of two
dual sheets, or equivalently, the intersection of a dual edge and the
boundary surface, is called a boundary dual vertex (Figure 4c). A
boundary dual face, a boundary dual edge, and a boundary dual
vertex correspond to a boundary primal vertex, a boundary primal
edge, and a boundary primal quad face, respectively. This fully
agrees with the dual graph definition used in the context of quad
meshing [CBK12].

Hex layout. As has been previously mentioned [GDC15], the sin-
gularity structure of a hex mesh induces another maximally simpli-
fied hex mesh topology, which we call hex layout (cf., the cited pa-
per terms it base complex). Our focus is to generate the dual graph
of this hex layout, thus minimizing the number of dual sheets con-
sidered. The final output hex mesh is obtained by regularly subdi-
viding the hex layout cells (see Figure 5).

4. System description

The input to our system is a 3D triangle mesh describing the bound-
ary surface of the volume to be hexahedralized. After some prepro-
cessing (most notably, the tetrahedralization of the volume using
TetGen [Si15] and the generation of a 4-RoSy field on the bound-
ary surface using the instant meshes method [JTPSH15]), the user
can start creating dual sheets. The user’s workflow is divided into
three steps: sheet editing, layout preview, and final adjustment (Fig-
ure 5). Please refer to the supplemental video for a demonstration
of the system.

4.1. Sheet editing step

Our system offers three different tools for modeling dual sheets:
Freeform, Cylinder, and 2D Sketch.

Freeform. The user designs sheets as Hermite thin-plate spline

implicit surfaces [MGV11] by placing Hermite (i.e., value and gra-
dient) constraints shown as points with arrows. The user can create
a new sheet with a single constraint by holding Shift and click-
ing on the boundary surface (Figure 6a). The new constraint is po-
sitioned at the clicked location, and its orientation is randomly set
to one of the four directions of the 4-RoSy field. If the initial orien-
tation is not what the user desired, she can rotate it about the sur-
face normal by 90 degrees by pressing a key (Figure 6b). The user
can adjust the position of the constraint by dragging the mouse, and
change its orientation by dragging while holding Ctrl (Figure 6c).

The user can add more constraints to the currently selected sheet
by holding Shift and clicking the boundary surface (Figure 6d).
The new constraint is positioned at the clicked location, and its ori-
entation is initialized with one among the four directions of the
4-RoSy field that is the closest to the current gradient of the sheet’s
implicit function.

By pressing Space, the user can hide the boundary surface
and examine the shape of the dual sheets inside the volume (Fig-
ure 6e). The user can create constraints inside the volume by hold-
ing Shift and clicking the sheet surface (Figure 6f). The new con-
straint’s orientation is initialized by the normal of the sheet surface.
The adjustment of position and orientation of constraints inside the
volume can be done using the same user interface as above (Fig-
ure 6g).

Cylinder & 2D Sketch. These tools are provided to support very
common cases especially for man-made objects where some dual
sheets can be viewed as an extrusion of a 2D profile curve (either
a circle or other general shapes) along the normal direction of the
2D plane (Figure 7). With these tools, the user initially draws a
freeform stroke on the screen. Upon completion, a plane parallel
to the screen (called a canvas) is generated near the model, and all
the drawn stroke points are projected onto the canvas. In the case
of the Cylinder tool, the system calculates the center and radius of
a circle that best fits the projected stroke points. The user can later
adjust the radius of the cylinder by dragging the circle drawn on the
canvas. In the case of the 2D Sketch tool, the system downsamples
the stroke points and generates a sparse set of Hermite constraints
for 2D Hermite thin-plate spline implicit function. The user can
manipulate these Hermite constraints using the same user interface
for the Freeform tool. The user can also rotate and translate the
entire canvas if necessary.

4.1.1. Required conditions for sheet configurations

When the user is finished with creating dual sheets, she presses
a button and asks the system to compute the primal hex layout.
During the process, the system throws an exception if any of the
following situations is detected:

C1: Two sheets intersect at an acute angle (Figure 8a), or
C2: Four or more sheets intersect at almost the same location
(Figure 8b). Although these tests are rather geometric instead of
topological, and these problematic configurations do not prevent a
valid hex layout topology from being generated, our system reports
them as errors since they likely lead to undesirable results. The
thresholds for these geometric tests can be adjusted depending on
the application needs.
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Sheet editing Layout preview Final adjustment

Figure 5: An overview of our system.
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Figure 6: Designing dual sheets using the Freeform tool.

Figure 7: Designing dual sheets using the Cylinder tool (top) and
the 2D Sketch tool (bottom).

C3: A volumetric subregion bounded by dual sheets does not
have its corresponding primal layout vertex (Figure 8c). This
situation can happen when a small portion of the volume is “cut
off” by only one or two dual sheets. It means that the current sheet
configuration is incomplete as a valid dual graph, which can be
fixed by either removing those sheets from or adding more sheets
to the problematic region.

C4: The same set of three dual sheets intersect at more than one
locations with no other sheets separating them (Figure 8d). We
treat this situation as anomaly because we assume the hex layout
topology to be simple (i.e., each edge/face/cell should be identified
by a unique pair/quadruple/octuple of vertices). This can be fixed
by inserting a new sheet between those problematic intersections.

(a) (b) (c) (d)

Figure 8: Problematic sheet configurations treated as errors by
our topology extraction algorithm.

4.1.2. Additional requirements due to sharp features

If the boundary surface has sharp features to be preserved, the sheet
configuration needs to satisfy an additional set of conditions. Be-
fore describing them, we first introduce the notion of a feature
graph:

Feature graph. When the input triangle mesh is imported, its sharp
edges are extracted based on the dihedral angles. A mesh vertex in-
cident to one or three or more sharp edges is defined as a feature
node, while a sequence of sharp edges running between two feature
nodes or forming a closed loop without touching any feature nodes
is defined as a feature arc (Figure 9). Each feature node represents
a boundary vertex to be present in the final hex mesh, while each
feature arc represents a sequence of boundary edges to be present
in the final hex mesh. The feature graph can be further edited if de-
sired; any manually selected edges can be made into feature arcs.
Any vertex on a feature arc can be made into a feature node, split-
ting the arc into two. Conversely, a feature node incident to exactly
two feature arcs can be eliminated, merging the two arcs into one.
The user can also create completely isolated feature nodes, not in-
cident to any feature arcs. Through manual editing of the feature
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(a) (b) (c) (d)

Click Click

Figure 9: A feature graph consisting of nodes (purple) and arcs
(yellow), describing the edges and vertices to be preserved in the
final hex mesh. After initialization based on the dihedral angles (a),
the user can edit the graph freely as needed (b,c,d).

(a) (b) (c)

Figure 10: Inappropriate configurations of dual sheets with re-
spect to the feature graph (top), and their resolutions by inserting
new sheets (bottom).

graph, the user can enforce hard constraints on the boundary ver-
tices and edges of the final hex mesh.

This definition of a feature graph naturally implies additional
requirements for the dual sheet configuration as follows:

D1: A boundary dual face can enclose at most one feature
node (Figure 10a), otherwise two or more feature nodes would get
mapped to the same boundary layout vertex, breaking our assump-
tion.

D2: A boundary dual edge can be intersected by at most one
feature arc (Figure 10b), for the analogous reason as above.

The next condition is involved with feature arcs that run through
boundary dual faces; we say that a feature arc runs through a
boundary dual face if two of its constituent boundary dual edges
are intersected by the same arc.

D3: If a feature arc runs through a boundary dual face, no
other feature nodes nor feature arcs can be present inside the
boundary dual face (Figure 10c). A feature arc running through a
boundary dual face means that the corresponding boundary layout
vertex must be lying somewhere on the arc. Having other feature
nodes or feature arcs inside the same boundary dual face contra-
dicts this assumption.

And finally, another simple requirement is:

D4: A feature arc must be intersected by at least one dual sheet,
otherwise the feature arc would not be represented by any of the
boundary edges of the final hex mesh.

The violation of any of the above conditions D1–D4 can always
be resolved by inserting a new sheet such that the relevant feature

graph elements get separated. Note, however, that inserting new
sheets may create new problematic configurations C1–C4.

When any of these errors is detected, the system reports the 3D
location at which the error occurred, the type of the error, and the
list of items involved in the error (IDs of sheets, feature arcs and
nodes), in a basic textual form in the terminal window.

4.2. Layout preview step

Once all the required conditions are met, the system can complete
the topology extraction step (Section 5), and proceeds to the re-
maining computational steps including the refinement of the tet
mesh (Section 7.1) and the 2D parameterization of the dual faces
(Section 6.1), which typically requires a bit of waiting.

In the next step of layout previewing, the edges of the final hex
mesh are visualized as textures, while the partitioning of the vol-
ume into distinct layout cells is visualized using colors. The user’s
task in this step is to specify the number of edge subdivisions de-
fined for each sheet, which is initialized according to a given tar-
get edge length. All the layout edges intersected by the same sheet
must have the same number of subdivisions, and the resulting hex
mesh is always conforming regardless of user input. The number
of edge subdivisions can be specified for the front and back sides
of each sheet separately; the specified number of edge subdivisions
for the respective sides will determine the regular 3D lattices gen-
erated inside the corresponding dual cells (Section 6.3). When the
user selects a sheet, the system renders the sheet’s boundary loop
twice with small offsets along the normal direction, and highlights
the currently selected side in red (Figure 5).

As the user changes the number of edge subdivisions, the vi-
sualization is updated immediately since only a fragment shader
program needs to be reexecuted with different parameters. If nec-
essary, the user can go back to the previous step and modify the
sheet configuration.

4.3. Final adjustment step

When the user is satisfied with the number of edge subdivisions
for each dual sheet, she presses a button to let the system compute
the 3D parameterization of the dual cells and generate the final hex
mesh (Section 6.3). In the final adjustment step, the user can per-
form some trivial postprocessing operations such as global/local
smoothing and manual repositioning of vertices. If desired, the user
can go back to the previous step and readjust the edge subdivisions.
Note that the final hex mesh generation is quicker this time, because
the 3D parameterization of the dual cells was already computed.

5. Topology extraction

We present a simple and robust algorithm for analyzing the topo-
logical structure of the dual graph and finding intersections among
dual sheets that fully make use of the implicit surface representa-
tion for the dual sheets.
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Figure 11: A 2D example of element codes where a domain is
divided by four sheets (#1–#4). Subregions bounded by the sheets
are assigned their unique vertex codes (in boxes with black border),
while intersections of two sheets are assigned their cell code (in
boxes with green border).

5.1. Element code

Our insight is that any point inside the volume (not exactly on any
of the dual sheets) can be easily classified into its corresponding
dual cell by looking at the signs of all the dual sheets’ implicit
functions. We define such a sequence of signs as a vertex code.
Now, let us consider a pair of adjacent dual cells sharing a common
dual face that is part of the i-th dual sheet. The vertex codes of these
two dual cells differ only at one position corresponding to the i-th
sheet, one having positive and the other having negative. Therefore,
we can naturally define an edge code for this dual face by setting
the value corresponding to the i-th sheet to zero. This treatment is
consistent with the relation between the primal edge and the dual
face, and the fact that the sheet function corresponding to the dual
face will evaluate to zero at all points on the sheet. A face code
and a cell code can be defined analogously; i.e., a face code and
a cell code have two and three positions set to zero corresponding
to the set of intersecting sheets that induce them, respectively. See
Figure 11 for a 2D example.

5.2. Topology extraction algorithm

Using this notion of element codes, the topology extraction pro-
cess becomes extremely simple. First, we piecewise-linearly dis-
cretize the dual sheets’ implicit functions over the tet mesh, then
compute all the dual sheets’ intersections with all of the tets in the
tet mesh. Next, for each tet, if it has intersections with three or more
sheets, we examine all the triplets of the intersecting sheets and see
if the intersection of the three planes corresponding to the triplet
lies within this tet or not, which is trivial to check: suppose the
three sheets’ function values evaluated at the four vertices of the tet
are fi, gi, and hi for 1 ≤ i ≤ 4. The intersecting point represented
by the tet’s barycentric coordinate λi satisfies:

∑λi fi = 0, ∑λigi = 0, ∑λihi = 0.

Together with the condition ∑λi = 1, the intersecting point can be
easily computed by solving a mere 4× 4 system of linear equa-
tions. If all the λi are positive, the intersecting point is found in-
side the tet. We then derive the code for the new hex cell by eval-
uating the function values of all but the three intersecting sheets
(which are already known to be zero) at the location of the inter-
section. We can then derive the vertex code for each of the hex
cell’s eight vertices by substituting the three zeros in the cell code
with the corresponding combination of positives and negatives. We
use OpenVolumeMesh [KBK13] for handling the volumetric mesh
topology; each time a new vertex code is encountered, a new vertex
instance is created with add_vertex, and the mapping from the
vertex code to the new vertex’s handle is stored. After all the eight
vertices’ handles are identified, a new hex cell instance is created
with add_cell. Note that the orientation of the hex cell needs
to be made consistent throughout the entire mesh; we ensure this
by checking the relative orientation of the three sheet functions’
gradients at the intersection.

One strength of our algorithm is that it reliably detects all the
intersecting points of three sheets (and analogously the intersecting
curves of two sheets) regardless of how many distinct sheets inter-
sect within the same tet. Note, however, that the tet mesh needs to
be dense enough to be able to capture the geometric complexity of
all of the sheets (e.g., a sheet making a sharp U-turn with some of
its part coming close to another part of itself).

6. Primalization

For the 2D counterpart problem of quad layout primalization,
Campen et al. [CBK12, CK14] used either the singularity of the
orientation field if only one is enclosed in a dual face, or otherwise
the geodesic center of the dual face, as the endpoints of anisotropic
geodesics representing separatrices between the layout’s singular
vertices, and used the intersections of the separatrices as the po-
sitions of the layout’s regular vertices. In our case, however, we
could not simply generalize this approach to 3D because, as men-
tioned in Section 1, it seems far from straightforward to general-
ize their anisotropic geodesic algorithm which is designed to find
1-manifold objects, to our volumetric case where 2-manifold ob-
jects (i.e., the surface patches representing the hex layout faces) are
sought for. Instead of exploring this direction, we developed a very
different approach based on a simple idea of mapping a dual cell
directly to a reference polyhedron via harmonic parameterization.

In the conventional setting for a harmonic parameterization in
2D, one maps a rectangular target domain on a 3D triangle mesh
to a unit square in the 2D parameter space. By mapping the iso-
lines of the UV coordinates back to the original 3D space, one ob-
tains a regular 2D lattice on the target domain that smoothly follows
the boundary. The same idea can be employed for the volumetric
case to obtain a regular 3D lattice inside a rectangular volumetric
domain. Our problem setting is similar to these, but in our case,
our target domains have topology of general polygons in 2D and
general polyhedra with degree-3 vertices in 3D. Our primalization
algorithm consists of two steps: the 2D parameterization of dual
faces which is performed when the user proceeds to the layout pre-
view step (Section 4.2), and the 3D parameterization of dual cells
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Figure 12: 2D parameterization of a triangular dual face onto
the regular triangle. The correspondences along the boundary es-
tablished by arc-length parameterization is visualized using color
gradients. For illustrative purposes, a 4×4 lattice grid correspond-
ing to the regular subregion of one corner (adjacent to the purple
and yellow sides) is also shown.

which is performed after the user confirms the generated hex layout
(Section 4.3).

6.1. 2D parameterization of dual faces

Since a dual face (corresponding to a primal edge) is topologically
equivalent to an N-sided polygon where N is the number of primal
cells incident to the primal edge (we assume the edge to be inside
the volume for now), we map it to a regular N-sided polygon in the
2D parameter space centered at the origin (Figure 12). We define
the map as piecewise bilinear, where each of the N corners has its
own bilinear map specified by the following four points:

• the corner itself,
• the midpoints of the two incident edges, and
• the centroid of the polygon (i.e., the origin).

We call such a rectangular region for bilinear interpolation defined
for each corner as a regular subregion. Note that the harmonic pa-
rameterization itself is carried out in the standard fashion; each
point on the dual edges surrounding the dual face gets assigned the
corresponding UV coordinate along the boundary of the N-sided
polygon in the parameter space via arc-length parameterization,
and after solving the system of linear equations, each point on the
dual face receives the resulting UV coordinate. If one wishes to
generate a quad mesh over the dual face (which is not needed in
our actual scenario), she would generate a 2D lattice for each regu-
lar subregion in the 2D parameter space, and map the lattice points
back to the original 3D space.

For dual faces incident to the boundary: We map the dual face
to a regular N-sided polygon in the 2D parameter space where N
is the number of primal cells incident to the primal edge plus two.
Intuitively, we can regard the dual face being mapped to the 2D pa-
rameter space as “missing” two consecutive regular subregions cor-
responding to the side of the boundary surface (Figure 13). There-
fore, we can handle this case by modifying the specification of the
boundary conditions in the above scheme; we map the boundary
dual edge belonging to this dual face to a polyline consisting of the
following three points:

• the midpoints of two edges adjacent to the boundary side, and
• the polygon’s centroid (i.e., the origin).

U

V

U

V

Figure 13: 2D parameterization of a dual face adjacent to the
boundary surface for cases where N = 3 (top) and N = 5 (bottom).

Another modification is that we map the dual edges incident to the
boundary dual edge to the halves of the corresponding line seg-
ments of the regular polygon, opposite to the boundary.

Finally, we also compute the 2D parameterization for each of
the boundary dual faces (corresponding to the boundary primal ver-
tices) in the exact same way. The 2D parameterization result will
be used to specify the boundary conditions for the 3D parameteri-
zation, as explained below.

6.2. Reference polyhedron

In order to generalize the above idea to 3D, we need to come up
with a “regular” polyhedron that is topologically equivalent to each
dual cell, which we call a reference polyhedron. Each face of such
a polyhedron is an N-sided polygon corresponding to a dual face
belonging to the dual cell, and each vertex of the polyhedron has
degree three (i.e., has three incident edges and faces) because it cor-
responds to a dual vertex which is an intersection of three sheets.
Thanks to Liu et al.’s observation [LZC∗18], we know there exist
only eleven types of such polyhedra if we limit the degree of dual
faces (or equivalently, the valence of primal edges) between three
and five, which is a moderate restriction and is adopted here as well.
We generated the actual geometry (i.e., the 3D vertex positions) of
these polyhedra by making the edges as equilateral as possible (Fig-
ure 14); we initialized the vertex positions with some reasonable
values, and performed interleaved iterations of averaging vertex po-
sitions and normalizing edge vectors until convergence (except for
the one with signature (0,3,6) where we first performed the above
iterations and then manually repositioned a pair of vertices outward
so that the strong concavity around them is eliminated). Note that
we center each reference polyhedron at the origin.

6.3. 3D parameterization of dual cells

We first explain our algorithm for the dual cells inside the volume.
For each dual cell (corresponding to a primal vertex), we obtain its
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(2,2,2) (0,4,4)(1,3,3) (2,0,6) (0,3,6) (0,2,8)

Figure 14: The actual shapes of the reference polyhedra. The five
trivial ones, regular polyhedra and prisms, are omitted. Since the
faces are generally non-planar, their shapes are visualized by bilin-
early interpolating vertex positions, edge midpoints, and face cen-
troids.

signature [LZC∗18] by counting the valences of the incident primal
edges, and use it to choose the corresponding reference polyhedron
from the eleven types. Next, we find a mapping from the dual cell’s
vertices to the reference polyhedron’s vertices using a graph iso-
morphism algorithm based on backtracking. Then, for each point
on each dual face, we assign a UVW coordinate as the boundary
condition of the 3D harmonic parameterization as follows (Fig-
ure 15): from the UV coordinate of the point on the dual face which
was computed in the previous step (Section 6.1), we can determine
which regular subregion of the N-sided polygon the point belongs
to, by looking at its angular component in the polar coordinate rep-
resentation. Furthermore, we can compute the bilinear interpolation
parameter that reproduces the same UV coordinate by solving the
inverse bilinear interpolation problem. Finally, we can obtain the
UVW coordinate for this point by performing a bilinear interpola-
tion with the obtained interpolation parameter against the following
four points in the 3D parameter space:

• the reference polyhedron’s corner corresponding to the regular
subregion,
• the midpoints of the two edges of the reference polyhedron’s

face corresponding to the dual face and incident to the above-
mentioned corner, and
• the centroid of the reference polyhedron’s face corresponding to

the dual face.

For dual cells at the boundary: Similar to the 2D case, we can
regard the dual cell being mapped to the 3D parameter space as
“missing” an entire layer of regular subregions corresponding to the
side of the boundary surface. Therefore, we modify the boundary
condition such that the boundary dual face is mapped to the cross-
section of the reference polyhedron exposed after cutting off the
layer of regular subregions, see Figure 16.

After the boundary conditions have been fully specified, we
solve the system of linear equations and obtain a UVW coordi-
nate for each point inside the dual cell. We finally obtain the output
hex mesh by generating a 3D lattice over each regular subregion of
each dual cell in the following way: for each lattice point, its cor-
responding UVW coordinate is obtained by performing a trilinear
interpolation against the following eight points in the 3D parameter
space (Figure 17):

• the reference polyhedron’s corner corresponding to the regular
subregion,
• the midpoints of the reference polyhedron’s three edges incident

to the above-mentioned corner,
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Figure 15: 3D parameterization of a dual cell with signature
(4,0,0) (left) onto the corresponding reference polyhedron, i.e., the
regular tetrahedron (right). Each point on each of the constituent
dual faces (red cross) has been assigned its UV coordinate after
the 2D parameterization step (middle). By looking at the angle be-
tween the coordinate vector and the U axis, we can trivially know
which regular subregion this point belongs to (four colored points).
We also obtain the corresponding bilinear interpolation coefficients
(s, t) by solving the inverse bilinear interpolation problem. The
UVW coordinate assigned to this point as the boundary condition
of 3D parameterization is then obtained by bilinearly interpolating
the corresponding four points on the reference polyhedron.
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Figure 16: Specifying the boundary conditions of 3D parameteri-
zation for a dual cell at the boundary surface.

• the centroids of the reference polyhedron’s three faces incident
to the above-mentioned corner, and

• the centroid of the reference polyhedron (i.e., the origin).

Lastly, we map the interpolated UVW coordinate back to the orig-
inal 3D space to obtain the XYZ coordinate for this lattice point.

Note that the found isomorphism between the dual cell vertices
and the reference polyhedron’s vertices is always ambiguous up to
reflectional symmetry. In order to make the hex cells consistently
oriented throughout the entire mesh, we check if the isomorphism
flipped the vertex ordering or not, and use the proper vertex order-
ing when adding hex cells to the mesh.

6.4. Preservation of sharp features

Our scheme can easily support the preservation of sharp features
by making slight modifications to the 2D parameterization step; no
changes are needed for the 3D parameterization step.

For dual faces incident to the boundary: Due to the required con-
dition D2 (Section 4.1.2), a boundary dual edge can be intersected
by at most one feature arc. We map such an intersected point to the
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s
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Figure 17: Obtaining a UVW coordinate for a lattice point by
trilinearly interpolating UVW coordinates of the reference polyhe-
dron’s corner (yellow), the edge midpoints (green), the face cen-
troids (blue), and the centroid (purple).

(a) (b) (c)

Figure 18: Modifications to the 2D parameterization step to
achieve feature preservation. Note that in (c), since the exact
length-wise midpoint of the feature arc will generally be on an edge
of the triangle mesh, no vertex is mapped to the origin. When split-
ting the feature arc into two, its constituent triangle mesh edges
up to the above-mentioned edge are included in one part (orange)
while the rest is included in the other (green).

origin of the 2D parameter space, and map the two halves of the
boundary dual edge to the corresponding segment using arc-length
parameterization separately (Figure 18a).

For boundary dual faces: If a boundary dual face encloses a fea-
ture node (which is ensured to be unique due to D1), the corre-
sponding point is mapped to the origin of the 2D parameter space.
Each feature arc connected to the feature node is mapped to a seg-
ment in the 2D parameter space between the origin and the mid-
point of the corresponding side of the N-sided polygon using arc-
length parameterization (Figure 18b).

Otherwise, due to D3, there is one feature arc running through
the boundary dual face. In this case, we split the feature arc roughly
at its middle, and map the two halves to the corresponding segments
in the 2D parameter space using arc-length parameterization (Fig-
ure 18c).

7. Implementation details

7.1. Generating a PLC for refining the tet mesh

The parameterization algorithm described in the previous section
demands a refined tet mesh that fully conforms to all the intersec-

Figure 19: A fully conforming refined tet mesh generated using
TetGen.

tions between the original tet mesh and the sheets and the intersec-
tions among the sheets (Figure 19). We again use TetGen [Si15] for
this mesh refinement step which takes a piecewise linear complex
(PLC) as input describing how the volume should be partitioned.
In our case, each cross-section of a tet by a sheet (either a trian-
gle or a quadrilateral) is potentially cut by arbitrarily many other
sheets, resulting in a partitioning of the cross-section into many
small facets, each corresponding to a distinct dual face. By making
use of our function-based representation for the dual sheets, we de-
vised a simple recursive algorithm to compute such a partitioning.

We observe that every point in the PLC must originate from one
of the following:

• an intersection of an edge of the tet mesh and a sheet,
• an intersection between two sheets on a face of the tet mesh, or
• an intersection among three sheets within a cell of the tet mesh.

We first compute all these intersection points and store them in the
PLC’s point list, and while doing so, we store a mapping from a
combination of a tet mesh element and a set of relevant sheets (e.g.,
“tet mesh face #10 and sheets #2 & #5”) to the corresponding index
into the point list.

Now, we introduce a data structure, denoted as P, representing
a polygonal subregion of a tet’s cross-section, that is to be further
split by other sheets. P can hold arbitrary number of corners, and
for each corner, it stores the function values of all the sheets as well
as its corresponding index into the point list. For each segment be-
tween two corners, P also stores from which source the segment
originates: either from a tet mesh face or from another sheet. Us-
ing this information, the function SPLITPOLYGON(P, j) computes
where P gets split by the j-th sheet by looking at the function val-
ues at the corners, and also obtains the indices into the point list
for the two intersections by using the information stored in each
segment. It outputs two new polygons P+ and P− which are fed
to the recursive function PROCESSPOLYGON(P, i, j+1). For each
tet intersected by the i-th sheet, the recursive splitting process is
started as PROCESSPOLYGON(Pinit, i, 1) with the initial polygon
Pinit corresponding to the original cross-section (either a triangle or
a quadrilateral). See Algorithm 1 for a pseudocode and Figure 20
for an example.

In addition to the facets on the dual sheets, we also need to han-
dle the facets on the boundary surface, which is done in a similar
fashion. Also note that we use TetGen’s region attributes field to
tell it which volumetric subregion defined by the PLC corresponds
to which dual cell.
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Figure 20: Generating facets of a PLC by recursively splitting the cross-section of a tetrahedron by a sheet. Suppose a tet mesh cell t is
intersected by sheet #1, producing a quadrilateral cross-section whose segments come from tet mesh faces f1, · · · , f4. The cross-section is
further split by three other sheets (#2–#4), and the process of one facet highlighted in red being generated is shown. Each time the polygon
gets split by the next sheet, the function values of the other remaining sheets at the intersections are obtained by linear interpolation. Each
segment stores from which source it originates (either a tet mesh face fi or a sheet #i) which allows us to uniquely identify the intersected
points in the PLC’s point list.

Algorithm 1 PROCESSPOLYGON(P, i, j)
1: if j > N then . N is the number of sheets
2: ADDPOLYGON(P); . adds P to the list of facets
3: else if i = j or the j-th sheet has no intersection with P then
4: PROCESSPOLYGON(P, i, j+1);
5: else
6: P+, P− ← SPLITPOLYGON(P, j);
7: PROCESSPOLYGON(P+, i, j+1);
8: PROCESSPOLYGON(P−, i, j+1);

7.2. Merging hex mesh vertices shared by multiple subregions

When generating the 3D lattice for each regular subregion of each
dual cell, we need to take into account that vertices at the boundary
of the lattice are shared by the lattices of the neighboring regular
subregions (either belonging to the same dual cell or to an adjacent
dual cell). We implemented a simple scheme to obtain a unique
handle for each of these shared vertices without having to explicitly
check the relative orientation of the neighboring dual cells. Since
every lattice point is generated by a trilinear interpolation of the
UVW coordinates assigned to the eight corners of the lattice which
correspond to the following eight primal layout elements:

• a layout vertex,
• three layout edges,
• three layout faces, and
• a layout cell,

it can be uniquely identified by the set of the relevant primal layout
elements along with their nonzero weights. For example, a lattice
point topologically at the middle between a layout vertex vi and
the midpoint of a layout edge e j is uniquely identified by a pair
of weighted handles, ((vi,1/2),(e j,1/2)). The weights are repre-
sented by rational numbers to circumvent the floating point round-
ing error that could otherwise occur in the equality test.

8. Results

We implemented our system using C++ and OpenGL. We use li-
bigl [JP∗18] for some basic geometry processing tasks such as
harmonic parameterization. For the examples shown in this paper,
the tetrahedralization of the input triangle mesh contains roughly
10k vertices, while the refined tet mesh contains roughly 150k to

200k vertices. On a laptop with a 2.9 GHz Intel Core i7 CPU, it
takes roughly one to two minutes to generate the refined tet mesh
and compute the 2D parameterization of dual faces, while it takes
roughly one minute to compute the 3D parameterization of dual
cells and generate the final hex mesh. The system consumes rela-
tively large amount of RAM (∼ 2 GB) mainly due to naively storing
the values of dual sheets’ implicit functions at each tet mesh vertex.
We expect this issue to be mitigated by storing the function values
only at vertices of tets intersected by dual sheets. We also expect
the processing speed to be improved through parallelization.

All modeling examples presented here were created by the au-
thor. As a simple sanity check to confirm that our primalization
algorithm works fine for all of the eleven signature types, we took
each of the surface meshes shown in Figure 14 as input to our sys-
tem, and successfully hexahedralized it (Figure 21).

Next, we tested our system against
the FANDISK model which is noto-
riously difficult to hexahedralize be-
cause of its subtle features. Since cre-
ating a good hexahedral topology for
this model from scratch seemed hard,
we instead chose to reproduce the
same topology (up to regular subdi-
vision) as the one shown in Liu et
al.’s paper [LZC∗18] (inset). Starting
from this reproduced topology, we
modified some portion of it such that
the manually selected subtle feature
shown in Figure 9 is preserved (Figure 1). This usage pattern sug-
gests a potential utility of our system in quickly reproducing a given
hexahedral topology and experimenting with its variations.

Figure 22 shows some other modeling examples which were
created without referring to any existing hexahedralizations. The
BUNNY model was especially difficult to deal with for our current
modeling interfaces; our system could benefit from the wealth of
prior art on 3D modeling.

9. Limitations and future work

Our work is only a first step in the direction of dual-based all-hex
meshing with some practical issues and rooms for improvement:
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Figure 21: A sanity check to confirm that our primalization algo-
rithm works fine for all the signature types.

• Generating hex meshes with mostly uniform edge lengths may
be difficult using our system since it requires careful design of
layout topology, a complex task entirely delegated to the user.

• The use of implicit representation for dual sheets, while ben-
eficial in terms of simplicity, imposes some strong restrictions
on the surface topology allowed for dual sheets. The strongest
among them is that self-intersecting dual sheets cannot be cre-
ated using our system, which are often relevant as evident
in the NAUTILUS model (Figure 9a) identified by Viertel et
al. [VSL16]. Our system also does not permit dual sheets that
do not divide the volume into two or more regions (Figure 9b).
One way to fix these issues would be to switch to using the ex-
plicit representation for dual sheets, where the implementation
complexity as well as the runtime cost are expected to increase.
Another way would be to develop some modifications to the im-
plicit representation such that these issues could be avoided.

• Unlike in 2D, a mapping in 3D obtained via harmonic parameter-
ization is not guaranteed to be bijective. We never encountered
such a mapping that lacks bijectivity while testing our system,
most likely because the boundary geometry of dual cells tended
to be smooth and simple. Investigating when the mapping loses
bijectivity and how to fix it, is left for future work.

• The required conditions described in Sections 4.1.1 and 4.1.2
may not be sufficient for inducing a valid hex topology and en-
forcing hard constraints expressed by a feature graph, respec-
tively. We empirically identified these conditions by running into
errors due to them not being satisfied. Determining if these con-
ditions are sufficient or not is left for future work.

• The user interface for modeling dual sheets can be improved in
a number of ways. In particular, creating dual sheets that re-
side completely inside the volume is barely possible using our
Freeform tool. Since existing high-quality hex meshes often con-
tain dual sheets that are mostly parallel to the boundary surface,
utilizing some other geometric information such as signed dis-
tance function seems promising for making our tool more intel-
ligent and geometry-aware. Also, even though fully automated
generation of dual sheets seems elusive, some kind of partial au-
tomation should be feasible where, starting from an existing con-
figuration of dual sheets, the system would suggest a way to cor-
rect an existing sheet or to create a new sheet such that the sheet
configuration becomes valid or better. Finally, visualization will
be a key issue when dealing with intricate configurations of dual
sheets inside the volume.

• Liu et al.’s method [LZC∗18] supports boundary vertex topolo-
gies with boundary edges of valence 4 (cf. their paper’s Fig. 3
bottom right) which seem to be of practical relevance. We will

need to expand our set of reference polyhedra in order to support
such topologies.

• Our system has been so far tested only against models of medium
complexity. Our future work includes determining how our sys-
tem scales to more complex examples, as well as conducting an
extensive user study comparing our system against other com-
mercial alternatives such as ANSYS [ANS18].
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