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Fig. 1. Given two triangle meshes A and B, we find a continuous, bijective and low-distortion map between them (their edge images shown in (a)). Internally,

we build a Compatible Intrinsic Triangulation (CIT), a pair of intrinsic triangulations on both models sharing the same connectivity; every vertex of A is

inserted to B’s intrinsic mesh, and vice versa (b). Our algorithm generates a piecewise-linear map in the form of overlay polygons; here, B’s texture is being
transferred to A with all the seams preserved (c).

Finding distortion-minimizing homeomorphisms between surfaces of ar-

bitrary genus is a fundamental task in computer graphics and geometry

processing. We propose a simple method utilizing intrinsic triangulations,

operating directly on the original surfaces without going through any in-

termediate domains such as a plane or a sphere. Given two models A and
B as triangle meshes, our algorithm constructs a Compatible Intrinsic Tri-
angulation (CIT), a pair of intrinsic triangulations over A and B with full

correspondences in their vertices, edges and faces. Such a tessellation allows

us to establish consistent images of edges and faces of A’s input mesh over B
(and vice versa) by tracing piecewise-geodesic paths over A and B. Our algo-
rithm for constructing CITs, primarily consisting of carefully designed edge

flipping schemes, is empirical in nature without any guarantee of success,

but turns out to be robust enough to be used within a similar second-order

optimization framework as was used previously in the literature. The utility

of our method is demonstrated through comparisons and evaluation on a

standard benchmark dataset.
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1 INTRODUCTION

Computing maps between surfaces is needed in many contexts, and

has been a classical topic of great importance in computer graphics

and geometry processing. In particular, maps that are continuous
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and bijective, called homeomorphisms, are required for many appli-

cations such as texture transfer and template fitting in order to avoid

various kinds of artifacts, but at the same time they are generally

more difficult to compute than other relaxed versions of maps.

Given two surfaces A and B as triangle meshes, a naive and intu-

itive idea one might think of is as follows:

(1) map A’s vertices onto B somehow, e.g., by using some form

of projection, then

(2) extend the above vertex-based map to A’s edges and faces

somehow, e.g., by using geodesics on B.

If one pursued the above idea while working directly on the orig-

inal surfaces, however, they would quickly realize that things get

complicated. As such, all previous works introduce an intermediate
domain such as a plane or a sphere and establish homeomorphisms

by going through that intermediate domain. The method proposed

by Schmidt et al. [2020] is the current state of the art in this area,

where the surfaces are locally mapped to an intermediate domain

in a globally consistent manner by using constant-curvature met-

rics. While their theory is elegant and results are impressive, their

approach is conceptually not so intuitive, potentially making its

implementation difficult for non-expert practitioners.

In this work, we present a simpler alternative that pursues the

above intuitive idea using intrinsic triangulations [Sharp et al. 2019b]
as our key ingredient. We propose Compatible Intrinsic Triangulation
(CIT), a pair of intrinsic triangulations defined on A and B where the
vertices, edges and faces are fully in correspondence (Fig. 1). Given

vertex images as input, our algorithm constructs a CIT by employing

carefully designed edge flipping schemes and other local operations

(Sec. 4). CITs define strict homeomorphisms, and allow one to easily

compute mapping distortions and their derivatives as well as to

optimize the vertex images by using the similar second-order global

optimization scheme as was used in the previous work [Schmidt

et al. 2020] (Sec. 6).

We do not claim, however, any practical advantages over Schmidt

et al. [2020]’s method. In fact, our method is less robust than theirs
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in the sense that it relies on the input vertex images being suffi-

ciently high-quality; otherwise, our algorithm can fail, as discussed

in Sec. 7. Nevertheless, to the best of our knowledge, our work is the

first in the literature on computing surface homeomorphisms with-

out going through any intermediate domains. In exchange for the

conceptual simplicity and intuitiveness of our approach, we had to

deal with a number of combinatorial problems which make our algo-

rithm inherently empirical and heuristic, providing no guarantee for

success. Yet, our algorithm is overall straightforward to implement,

and we experimentally demonstrate practical level of robustness of

our method using a standard benchmark dataset (Sec. 7.3).

We believe it is natural to utilize intrinsic triangulations for the

purely intrinsic problem of inter-surface mappings. The two re-

search domains have received increased attentions in the community

recently, but only in separate, unrelated contexts. This work aims at

bridging the two, thereby inspiring other researchers to develop new

solutions to this difficult problem. In this light, we release our ref-

erence implementation at https://github.com/kenshi84/compatible-

intrinsic-triangulations.

2 RELATED WORK

There are a large body of work on computingmaps between surfaces,

and they can be roughly divided into two groups based on whether

strict homeomorphism is sought after or not. Those which do not

seek for homeomorphism seem more popular, presumably because

it is easier to represent and optimize maps in this setting. A variety

of methods have been proposed including:

• projection-based methods [Ezuz et al. 2019a,b; Panozzo et al.

2013],

• distribution-based methods [Mandad et al. 2017; Ovsjanikov

et al. 2012; Solomon et al. 2012], and

• methods developed in the context of surface registration [Bouaziz

et al. 2013; Huang et al. 2008; Sharf et al. 2006; Tam et al. 2013;

Wu et al. 2007; Yang et al. 2019; Yang et al. 2020; Zhang et al.

2006].

While there are many use cases for these relaxed maps, turning

them into actual homeomorphisms is a non-trivial, open problem.

Computing homeomorphisms between surfaces is generally more

difficult, and usually an intermediate domain is used in order to

define the final map as a composition of individual maps between

surfaces and the intermediate domain. Examples of intermediate

domains include:

• a plane [Aigerman and Lipman 2015; Aigerman et al. 2014,

2015; Kanai et al. 1997; Kim et al. 2011; Lipman and Funkhouser

2009; Litke et al. 2005; Schmidt et al. 2019; Tierny et al. 2011],

• a sphere [Aigerman et al. 2017; Alexa 2000; Asirvatham et al.

2005; Baden et al. 2018],

• a hyperbolic plane [Aigerman and Lipman 2016; Shi et al.

2017], and

• base complexes [Kraevoy and Sheffer 2004; Praun et al. 2001;

Schreiner et al. 2004].

Among the above, only a very few address the problem of mini-

mizing the map distortion in an end-to-end manner. Methods by

Schreiner et al. [2004] and Kraevoy et al. [2004] only allow local

optimization per each vertex’s 1-ring neighborhood, and are prone

to converging to undesirable local minima. Methods by Litke et

al. [2005] and Schmidt et al. [2019] do offer global optimization, but

they are applicable only to surfaces of disk topology.

Distortion minimization of homeomorphisms between closed

surfaces of arbitrary genus in a global and end-to-end manner was

addressed only recently by Schmidt et al [2020]. Our problem setting

is exactly the same, and our results are similar with theirs. Unlike

their method where surfaces are locally mapped to a respective

intermediate domain (either a plane, a sphere, or a hyperbolic plane,

depending on the surface genus) by using constant-curvature met-

rics, our method constructs consistent mappings between surfaces

directly on the original surfaces without going through any interme-

diate domains by using intrinsic triangulations [Sharp et al. 2019b],

which we believe leads to a simpler (albeit heuristic) algorithm.

Intrinsic triangulations. Our work is directly inspired by the pow-

erful concept of intrinsic triangulations based on the signpost data

structure [Sharp et al. 2019b], which has already found a number of

extensions and use cases in the literature. Sharp and Crane [2020a]

utilized it for defining a high-quality Laplacian operator on non-

manifold meshes as well as point clouds. Sharp and Crane [2020b]

also demonstrated that one can find polyhedral geodesics on sur-

faces by just flipping edges intrinsically. The intrinsic Delaunay

triangulation algorithm has already been used for various geome-

try processing tasks [El Ouafdi et al. 2021; Fumero et al. 2020; Tao

et al. 2021]. Our work widens the application domains of intrinsic

triangulations to the problem of inter-surface mappings.

Compatible triangulations for 2D animation. Our algorithm for

constructing CITs is mainly about deciding which edges to flip based

on the configuration of nearby vertices in a local 2D coordinate sys-

tem, and thus is quite related to the existing literature on compatible

triangulations in the context of 2D animation [Alexa et al. 2000;

Baxter III et al. 2009; Liu et al. 2018; Surazhsky and Gotsman 2004].

Revisiting these algorithms in our context may lead to substantial

improvement of our algorithm, which is left for future work.

3 OVERVIEW

Our input consists of a pair of triangle meshes 𝑀A = (𝑉A, 𝐸A, 𝐹A)
and 𝑀B = (𝑉B, 𝐸B, 𝐹B) for the two models, along with A’s vertex
image 𝜙A→B : 𝑉A ↦→ 𝐹B × Λ, with Λ = {(𝜆1, 𝜆2, 𝜆3) |

∑
𝑖 𝜆𝑖 = 1} ⊂ R3

being the space of barycentric coordinates, which maps A’s vertex
to a point inside B’s face, and the other one in the opposite direc-

tion 𝜙B→A. Any method of choice can be used to obtain these vertex

images, such as the Hyperbolic Orbifold Tutte (HOT) method [Aiger-

man and Lipman 2016]; the only requirement is that they need to

be reasonably consistent in both directions in order for our algo-

rithm to succeed. Given such input data, our algorithm generates a

Compatible Intrinsic Triangulation (CIT), as explained in Sec. 4.

In Sec. 5, we explain how to process the generated CIT further

in order to obtain images of 𝐸A on𝑀B and vice versa as piecewise-

geodesic polylines, as well as the piecewise-linear mapping between

A and B as an overlay mesh.

From the generated CIT, we compute the map’s distortion energy

and its derivatives using automatic differentiation, just like the

previous method [Schmidt et al. 2020]. We displace the current
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Intrinsic Delaunay flip

A B A B

Fig. 2. The vertex insertion step (left) followed by the intrinsic Delaunay flipping step (right). Each vertex in correspondence is drawn in its unique color, and

each original (i.e., non-inserted) vertex is drawn with a black silhouette. A merged vertex is drawn as a larger ball. The vertex highlighted by the red arrow

originates in B and is inserted to A’s input edge, splitting the two adjacent intrinsic faces. Each compatible edge (i.e., connecting the same pair of corresponding

vertices) is drawn in its unique color, while each incompatible edge is drawn in dark gray. Notice how the intrinsic Delaunay flipping step reduces the number

of incompatible edges significantly.

vertex images by the computed descent direction multiplied by a

certain step size, and plug them into our CIT generation algorithm

again to arrive at a new configuration. We explain this optimization

process in Sec. 6.

Notations. We use a bold font style to distinguish the intrinsic

mesh and its elements from the input mesh and its elements on

either model. For example, 𝑣A ∈ 𝑉A refers to a vertex of A’s input
mesh, while eB ∈ EB refers to an edge of B’s intrinsic mesh.

4 CIT GENERATION

4.1 Vertex insertion

After initializing intrinsic meshes MA and MB as copies of input

meshes 𝑀A and 𝑀B, we first insert A’s input vertices 𝑉A into MB

according to the vertex image 𝜙A→B. For each input vertex 𝑣A ∈ 𝑉A,

we check if its image 𝜙A→B (𝑣A) = (𝑓B,𝝀) is strictly inside 𝑓B, i.e., if

𝜆𝑖 > 0,∀𝑖 (we call such a mapped point a face point). If so, we insert
a new vertex into an intrinsic face fB ∈ FB corresponding to that

face point, splitting fB into three.

If one component of {𝜆𝑖 } is zero, the mapped point is exactly on

B’s input edge 𝑒B ∈ 𝐸B (we call such a mapped point an edge point).
In this case, we insert a new vertex into an intrinsic edge eB ∈ EB
corresponding to that edge point, splitting eB into two.

If two components of {𝜆𝑖 } are zero, this means A’s vertex 𝑣A
is mapped exactly onto B’s vertex 𝑣B, i.e., 𝜙A→B (𝑣A) = 𝑣B. In this

case, we ensure that the vertex image in the opposite direction is

consistent, i.e., 𝜙B→A (𝑣B) = 𝑣A. We conceptually interpret such a

case as the original vertex and the inserted vertex being merged
in the intrinsic mesh, and we do not insert a new vertex in this

case. In our method, we achieve hard constraints on a set of fixed

corresponding vertex pairs by keeping them as merged (we call such

fixed vertices anchors). If not using this hard constraints mode, we

will later split each merged vertex into two (as explained in Sec. 4.7)

in order to treat the two vertices as variables in the optimization.

Additionally, we introduce the following adjustment procedure

for stability reasons: when all of {𝜆𝑖 } are positive but one compo-

nent is extremely small, the mapped face point is almost on one of

the edges of the mapped face. Having an intrinsic vertex at a face

point extremely close to an input edge causes numerical instability

for our overlay mesh extraction algorithm. As such, we clamp the

smallest value below a threshold to zero and increase the other two

components to sum to one, and treat it as an edge point.

We perform the same vertex insertion process in the opposite

direction (B → A) as well.

4.2 Compatible edges & faces

After the vertex insertion step, the intrinsic meshesMA andMB have

the exact same numbers of vertices, edges and faces. Also, the intrin-

sic vertices of both models VA and VB are fully in correspondence.

If the endpoints of A’s intrinsic edge eA ∈ EA correspond to the end-

points of B’s intrinsic edge eB ∈ EB, we say eA and eB are compatible.
If no such intrinsic edge in EB exists, we say eA is incompatible. We

can further define the notion of face compatibility: if all the three

edges of A’s intrinsic face fA ∈ FA are compatible, and if there exists

B’s intrinsic face fB ∈ FB having the same set of compatible edges

in the consistent order, then we say fA and fB are compatible. If fB
has the same set of compatible edges but in the reversed order, we

say fA and fB are reversed. If an intrinsic face is neither compatible

nor reversed, we say it is incompatible. If all the intrinsic edges are

compatible, all the intrinsic faces will be compatible by necessity.

Our goal is to reach this state by mutating MA and MB in certain

ways.

Fig. 2 left shows an example state after the vertex insertion step.

We draw each vertex in correspondence as well as each compatible

edge in their unique color, while we draw each incompatible edge in

dark gray. Notice that only some fraction of the edges are compatible

at this point.

There are some rules about intrinsic edges that must be adhered to

in our algorithm: first, we do not allow self-edges, i.e., edges starting

from and ending at the same vertex. We also do not allow multi-

ple intrinsic edges connecting the same pair of intrinsic vertices,

because they prevent the definition of one-to-one correspondence

between A’s intrinsic edge and B’s intrinsic edge. These rules imply

that every intrinsic vertex always has degree greater than two. In
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Fig. 3. Five subroutines constituting our FlipToCompatible algorithm.

the following where we flip intrinsic edges, in addition to the geo-

metric feasibility check in the original signpost method [Sharp et al.

2019b], we perform this uniqueness check in order to determine

flippability of intrinsic edges.

4.3 Delaunay flipping

The first step in improving our meshes’ compatibility is to perform

the intrinsic Delaunay flipping algorithm [Sharp et al. 2019b] on both

intrinsic meshes MA and MB independently. When the input vertex

images are reasonably consistent in both directions, the intrinsic

vertices VA and VB tend to have vertex neighborhoods in similar

geometric configurations, thus the Delaunay flipping procedures on

both models tend to result in similar connectivities. Often, this step

already makes a significant portion of the intrinsic edges compatible

(Fig. 2 right).

4.4 Merging nearby vertices

An extremely short intrinsic edge in a CIT can be a source of numer-

ical problems both for the computation of the energy derivatives

and for the generation of the overlay mesh. The Delaunay flipping

algorithm tends to have connected such nearby vertex pairs as com-

patible edges. Such extremely short intrinsic edges also tend to be

collapsible, i.e., its endpoints consist of an original vertex and an in-

serted vertex, as they are usually caused by the input vertex images

mapping A’s vertex very close to B’s vertex and vice versa.

As such, before proceeding to our main algorithm for improving

compatibility as described below, we collapse each of such collapsi-

ble compatible edges whose length is below a threshold and turn

them into a merged vertex. This edge collapse operation is realized

by deleting the inserted vertex and reconnecting all of its adjacent

edges to the original vertex.

4.5 FlipToCompatible algorithm

In this section, we describe our FlipToCompatible algorithm which

tries to make MA and MB as compatible as possible by just flipping

edges. Note that it is rare to obtain a valid CIT with this algorithm

alone, especially when the input vertex images start to deviate from

being mutually consistent (which happens when we examine large

step sizes during optimization), and we will need to resort to some

additional procedures that involve relocation of inserted vertices,

as we explain later. We do prefer, however, to utilize edge flips

maximally to improve compatibility, because we do not want to

modify the input vertex images unnecessarily.

Our algorithm consists of five subroutines (Fig. 3), and it executes

each of them in order. If a certain subroutine was able to increase

the number of compatible edges, it goes back to the beginning and

repeats until no more changes can be made. In the following, we

explain each of the subroutines in the order of the more frequently

applicable to the less frequent. The less frequent ones take effect

only occasionally, but they do increase the chance of success of our

CIT generation algorithm and are thus necessary.

Below, when deciding whether to flip an edge or not, we assume

it is flippable (i.e., we ignore edges that are not flippable).

Subroutine 1: SimpleFlip. For A’s incompatible edge eA ∈ EA, we
check its opposite vertices, and if there is an incompatible edge

eB ∈ EB connecting these vertices, we flip eA. We perform the same

procedure in the opposite direction as well.

Subroutine 2: SimpleCoFlip. If there is a pair of incompatible edges

eA and eB that have the same opposite vertices, we flip both of them.

Subroutine 3: FlipCompatible. Given a compatible edge e1

A and its

counterpart e1

B, we check if there is an incompatible edge e2

B that

is either connecting eA’s opposite vertices, or is flippable and has

the same opposite vertices as e1

A. We perform the same check in the

opposite direction for e1

B, and if the two checks both pass, we flip e1

A
and e1

B (as well as e
2

B (resp. e
2

A) if it has the same opposite vertices as

e1

A (resp. e
1

B)).

Subroutine 4: FlipFlatPolygon. Sometimes, incompatible edges are

clustered and form a patch of connected faces with no interior

vertex. In such a case, all the faces in the patch can be flattened to

2D without any distortions, resulting in a pair of compatible 2D

polygon boundaries for A and B. Our algorithm tries to triangulate

these two polygons in a compatible way. We use a simple heuristic

to achieve this: for each vertex, we check if it is “visible” from each of

all the other vertices of the polygon (i.e., the line segment between

them is contained within the polygon) for both A and B. If such
a vertex is found, we connect all the other vertices to that found

vertex by repeatedly flipping edges.

Subroutine 5: DoubleFlipCompatible. For a pair of nearby compati-

ble edges (e1

A, e
2

A) and its counterpart (e1

B, e
2

B), we flip all these four

edges if the following conditions hold:

• e1

A and e2

B have the same opposite vertices.

• There is an incompatible edge e3

B that is connecting the oppo-

site vertices of e2

A.

• There is an incompatible edge e3

A that is connecting the oppo-

site vertices of e1

B.

4.6 Resolving incompatible patches

We define a connected set of non-compatible (i.e., reversed or in-

compatible) faces as an incompatible patch. At this point, assuming
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#incompatible edges: 4 #incompatible edges: 4 #incompatible edges: 3 #incompatible edges: 2 #incompatible edges: 1 #incompatible edges: 0

Fig. 4. An example where FlipToCompatible is stuck (leftmost) but flipping one compatible edge pair within an incompatible patch (its boundary edges shown

in red) leads to a different configuration (middle left) which can be handled by FlipToCompatible. The number above each arrow refers to the used subroutine

of FlipToCompatible, while the number of incompatible edges in the patch is shown at the bottom of each figure.

Pattern 1

A B A B A B A B A B

Pattern 2 Pattern 3 Pattern 4 Pattern 5

Fig. 5. Five patterns for merging inconsistently positioned vertices. Original and inserted vertices are drawn with thick and thin black silhouettes, respectively.

The inserted vertex to be removed after the merge are highlighted by red arrows in each pattern.

the input vertex images are reasonably consistent, we expect that

the majority of edges have been made compatible and that there

are small and sparsely distributed incompatible patches left. Our

strategy then is to examine each of these incompatible patches and

try to make them compatible by various means as explained below.

Note that a pair of incompatible patches in A and B can be made

correspondent by checking if they consist of the same set of corre-

sponding vertices. Thus, we extract all the corresponding pairs of

incompatible patches and process each of them in order.

4.6.1 Exploring variations by flipping edges within patches. Con-

sider an example incompatible patch shown in Fig. 4 at the far left

where our FlipToCompatible algorithm cannot make any progress.

It is, however, still possible to make FlipToCompatible process

this patch if we flip the compatible edge pair highlighted by the

red arrows in the figure. Note that flipping this edge pair does not

increase the number of incompatible edges.

Based on this observation, after the termination of FlipToCom-

patible, for each corresponding pair of incompatible patches, and

for each corresponding pair of their compatible edges, we check if

flipping the edge pair preserves the number of incompatible edges.

If so, we flip the edge pair and run FlipToCompatible again and see

if it makes any progress, and if it does, we go back to the extraction

of incompatible patches and repeat.

4.6.2 Merging inconsistently positioned vertices. After running our

edge flipping algorithms as described above, there can still remain

a few incompatible patches that cannot be resolved by just flipping

edges. Such incompatible patches are often caused by the input ver-

tex images mapping some vertex pairs close to each other on both A
and B, but in slightly inconsistent positions. Our next strategy then

is to merge these vertices so that incompatible edges arising from

them will disappear. We use a pattern-based approach for determin-

ing which vertex pair to merge, and we empirically identified five

common patterns (Fig. 5). Note that for pattern 5 we relaxed the no-

tion of face connectedness when extracting incompatible patches so

BA BA

Fig. 6. An example where our vertex merging algorithm cannot merge the

purple and brown vertices due to the presence of the pink vertex on B (as
highlighted by the blue arrow), since the line segment between the green

and purple vertices crosses the cyan and orange edges adjacent to the

pink vertex. In such a case, we move the purple vertex on A outwards a

bit (as highlighted by the yellow arrow) to make the boundary shape of

this incompatible patch convex, making its incompatible edge flippable (as

highlighted by the red arrow).

that faces sharing only one vertex can be included in the same patch.

See Appendix A for details about how we handle each pattern.

4.6.3 Deforming patch boundary. Our vertex merging algorithm

is sometimes unable to merge the intended vertices due to various

configurations of vertices neighboring the incompatible patch, as

illustrated in Fig. 6. In such cases, as a last resort, we try to deform

the boundary shape of each incompatible patch so that it becomes

convex, which will likely make some non-flippable incompatible

edges flippable. Note that this operation can also fail due to various

nearby vertex configurations. We run FlipToCompatible again if

any of the patches could be deformed.

4.7 Splitting merged vertices

If there are any incompatible edges left at this point, our CIT gen-

eration algorithm has failed. Otherwise, we move to the next step

of splitting merged (non-anchor) vertices (Fig. 7). To split a merged

vertex, we first need to determine along which pair of edges the split

should occur. We choose such a pair of edges (consistently across

A and B) in a way that makes the angle between the two edges as

close to 𝜋 as possible. The newly created vertex is positioned at a

ACM Trans. Graph., Vol. 41, No. 4, Article 57. Publication date: July 2022.
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A B A B

Fig. 7. The split of a merged vertex. The pair of edges to be split is indicated

by the red arrows, while the displacement vectors for the newly created

vertex are indicated by the yellow arrows.
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Fig. 8. An example where flipping edges to minimize the distortion energy

can give rise to almost degenerate faces. A number inside or next to each

triangle denotes its area.

point displaced from the original vertex in the average direction of

the two edges and by a small distance (10% of the smallest height of

the adjacent faces with the opposite edges being their bases). Note

that the displacements on A and B should be opposite in order to

maintain consistency.

4.8 Optimizing connectivity

Having succeeded in generating a valid CIT, we have a freedom to

explore the space of CITs with various connectivities by flipping

pairs of corresponding edges. A tempting strategy then, which we

tried initially, is to repeatedly flip each edge pair if doing so results

in lower energy, as per the Delaunay flipping algorithm [Sharp et al.

2019b], with an expectation that the final converged configuration

will give the smoothest inter-surface map for a given vertex image.

We realized, however, that this strategy has a serious issue: it does

not care at all about the generation of almost degenerate faces (Fig. 8)

which will cause numerical problems both in the computation of

energy derivatives and the extraction of the overlay mesh.

As such, the strategy we adopted is to flip edges such that the

smallest angle of corners of triangles on both A and B is maximized.

While leading to a slightly higher energy, this approach generates

much better quality triangles which makes our overall pipeline

robust, and it tends to make the final edge and face images appear

smoother, to our surprise. An in-depth analysis on the space of CITs

by flipping edges is left for future work.

5 OBTAINING PIECEWISE-LINEAR MAP

5.1 Obtaining edge images

To obtain the piecewise-linear map induced by a CIT in the form of

an overlay mesh, we first need to obtain images of 𝐸A on 𝑀B and

vice versa, which tell us about where edges of A and B intersect. The
process consists of three steps: first, we trace A’s intrinsic edges
EA over A’s input mesh 𝑀A to detect all their intersections with

A’s original edges 𝐸A, as was done in the original signpost method

for visualizing intrinsic edges [Sharp et al. 2019b] (Fig. 9a). Next,

we reinterpret the obtained intersections (edge points on 𝑀A) as

edge points on MA. This is easily done by calculating the relative

arc-length parameter value of each intersection point with respect

to the relevant intrinsic edge (Fig. 9b). Note that, by definition, a

path corresponding to 𝑒A ∈ 𝐸A onMA is always a geodesic. Finally,

we linearly map such a path to B’s intrinsic meshMB, obtaining a

(generally) non-geodesic path onMB, and connect its corresponding

points on𝑀B by geodesics, obtaining a piecewise-geodesic path on

𝑀B (Fig. 9c). The directions and distances for this final geodesic

tracing are calculated based on the geometry ofMB. Intersections

of this piecewise-geodesic path and 𝐸B are recorded as intersections

between 𝑒A and 𝐸B.

We run the same process in the opposite direction to obtain im-

ages of B’s original edges on𝑀A. Note that this second run generates

the same set of intersections between 𝐸A and 𝐸B up to small numer-

ical errors.

5.2 Overlay mesh generation

Having detected all the intersections between all possible pairs of

edges, we are now ready to generate an overlay mesh for each of A
and B. As the two intrinsic meshesMA andMB are compatible, we no

longer need to distinguish between them, so we drop the subscript

in the following description when referring to the intrinsic mesh and

its elements. Our goal is to enumerate all the overlay polygons in

each intrinsic face f ∈ F which can be intersected by any number of

A’s original edges and B’s original edges (Fig. 10 left). We achieve this

using a data structure called an overlay wedge which is generated

for each corner of an overlay polygon and encodes information

about which halfedge to switch to when going around the overlay

polygon (Fig. 10 right), as explained below.

We call each vertex in an overlay mesh an overlay vertex which

can come from either

(1) an intersection between edges (which can come from either

𝐸A, 𝐸B, or E),
(2) A’s original vertex 𝑉A, or
(3) B’s original vertex 𝑉B.

For the first case, we generate a quadruplet of overlay wedges for

each intersection (Fig. 11a). An overlay wedge w stores a reference
to the halfedge hIN which comes into the corner when viewed from

inside its associated overlay polygon (assuming the counterclock-

wise ordering), along with the relative arc-length parameter value

tIN representing the position of the intersection on hIN. Note that
hIN can refer to either the intrinsic mesh’s halfedge h, A’s original
halfedge ℎA, or B’s original halfedge ℎB. Likewise, w also stores a

reference to the outgoing halfedge hOUT and its associated parameter

value tOUT.
For the other two cases, we generate a number of overlay wedges

according to the number of edges incident to the overlay vertex

(Fig. 11b-d). To do so, we first need to determine the correct ordering

of halfedges incident to the overlay vertex originating from different

sources (𝑀A, 𝑀B, or M), which is possible thanks to the signpost

data structure storing directions of intrinsic edges relative to the
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Fig. 9. The generation of images of A’s original edges on B’s input mesh. We first detect all the intersections of A’s intrinsic edges against A’s original edges,
depicted as red crosses (a). The numbers in the blue boxes denote the relative arc-length parameter values of the intersections with respect to A’s original
edges. We then reinterpret these intersections as points on A’s intrinsic edges, with their relative arc-length parameter values denoted by the numbers in the

white boxes (b). Finally, we linearly map these points to B’s intrinsic mesh, obtaining non-geodesic paths, and connect each pair of consecutive path points by

a geodesic, obtaining piecewise-geodesic paths on B’s input mesh (c). The yellow crosses denote intersections of these geodesic pieces and B’s original edges,
representing the intersections between A’s edges and B’s edges. We use line thickness to visualize different kinds of edges (A’s original edges, B’s original edges,
and intrinsic edges), and we use the largest thickness to imply the underlying domain on which the geodesic paths are computed or defined.

Fig. 10. (Left) Each intrinsic face can be intersected by any number of edges

of A and B, resulting in overlay polygons. (Right) We enumerate each overlay

polygon by using a data structure called overlay wedge associated with each

corner of the overlay polygon.

canonical tangent spaces defined on vertices, edges, and faces of the

input mesh [Sharp et al. 2019b].

Having processed all the overlay vertices and generated all the

overlay wedges, we group them by their hIN fields, and for each

group, we sort them by their tIN values. This allows us to find, given
an overlay wedge w, its “next” overlay wedge in the overlay polygon

by the following procedure:

(1) obtain the sorted list of wedges associated with w.hOUT, and
(2) scan the list in the ascending order and return the first item

whose tIN value is greater than w.tOUT.

This way, we can find cycles of overlay wedges and thus generate

overlay polygons.

Also, because each overlaywedge stores references to halfedges of

the inputmeshes, we can transfer the texture coordinate data present

in the originalmeshes (which are typically stored per halfedge) to the

overlay meshes. This allows us to transfer a texture image from one

model to the other while preserving all the seams, as demonstrated

in Fig. 1c.

6 OPTIMIZATION

6.1 Computing energy & derivatives

Given a CIT, computing its distortion energy (measured using the

symmetric Dirichlet as was done in the previous work [Schmidt et al.

2019, 2020]) is simple if it were not for its derivative computation: the

intrinsic edge lengths already define the 2D shape of each intrinsic

face, so we can trivially compute the energy using these 2D shapes:

E =
∑︁
f∈F

∥J(f)∥2

F
𝐴𝑟𝑒𝑎(fB) + ∥J(f)−1∥2

F
𝐴𝑟𝑒𝑎(fA) (1)

where J(f) = D(fB)D(fA)−1 ∈ R2×2
is a map Jacobian deforming fA

into fB in an arbitrary 2D embedding, D(fA) = [p2 − p1, p3 − p1] ∈
R2×2

, and p1, p2, p3 ∈ R2
are the embedded 2D coordinates of fA’s

three corners (D(fB) ∈ R2×2
is defined analogously). We use this

lightweight method to compute the energy during the line search

as described in Sec. 6.2.

To compute the derivative, however, we need to express the en-

ergy as a function of the input vertex images E(𝜙A→B, 𝜙B→A), which
boils down to expressing those embedded 2D coordinates of intrin-

sic faces’ corners (i.e., p1, p2 and p3 introduced above) as linear

combinations of 2D coordinates of 𝑉A or 𝑉B locally embedded in

2D. For example, suppose one corner of f ∈ F originates in 𝑣B ∈ 𝑉B
and is mapped to a face point on𝑀A as 𝜙B→A (𝑣B) = (𝑓A, (𝜆1, 𝜆2, 𝜆3))
where 𝜆1 > 0, 𝜆2 > 0 and 𝜆3 = 1 − 𝜆1 − 𝜆2 > 0. Then, we need to

express the 2D coordinate of the corresponding corner of fA as a

function of 𝜆1 and 𝜆2:

p(𝜆1, 𝜆2) = 𝜆1q1 + 𝜆2q2 + (1 − 𝜆1 − 𝜆2)q3 (2)

where q1, q2 and q3 are the 2D coordinates of 𝑓A embedded in 2D

locally. Note that this local embedding (or flattening) must be con-

sistent (i.e., in a common coordinate frame) among all the original

faces {𝑓A} ⊂ 𝐹A that support fA (we call this face set fA’s support
patch, see Fig. 12 left). This is always possible without introducing
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Fig. 11. Overlay wedges generated per overlay vertex (depicted as a black circle at the center in each figure). (a) For an overlay vertex due to the intersection

of two edges, we generate four overlay wedges. Here, A’s original edge at index 123 and B’s original edge at index 456 are intersected (with their canonical

directions depicted as arrows). We use a common convention that an edge at index 𝑛 has its pair of halfedges at indices 2𝑛 and 2𝑛 + 1. (b,c,d) For an overlay

vertex of the other types (A’s vertex inserted into B’s face, an anchor vertex where A’s vertex and B’s vertex overlap, and A’s vertex inserted into B’s edge,
respectively), we generate overlay wedges according to the number of edges incident to the overlay vertex. Here, edges of the intrinsic mesh are depicted as

thicker lines in various colors. Note that for (b) and (c), all the wedges have tIN = 1 and tOUT = 0.

A B

U

V

O

U

V

O

Fig. 12. Flattening of fA’s support patch (left) and fB’s support patch (right)

for the computation of the energy derivative. Note that the orange vertex

which originates in𝑉B is inserted into 𝑒A ∈ 𝐸A, and we need to include its

adjacent face not overlapping with fA in the patch because it is used as the

tangent space for that edge point.

any distortions thanks to the construction of intrinsic triangula-

tions guaranteeing nonexistence of original vertices inside any of

intrinsic faces [Sharp et al. 2019b].

Note that when 𝜙B→A (𝑣B) is an edge point, we use one of the

edge’s two adjacent faces (determined by the edge’s canonical orien-

tation) as the tangent space and reinterpret the edge point as a face

point in that face. For this reason, fA’s support patch must include

such an adjacent face even if it does not overlap with fA (see the

bottom right triangle of fA’s support patch in Fig. 12 left).

We perform the same procedure for fB ∈ FB corresponding to fA
(Fig. 12 right), and derive the energy expression as a function of all

the barycentric coordinates of the input vertex images involved in

this intrinsic face. In the absence of anchor vertices, each corner

of an intrinsic face corresponds to an inserted vertex in one model

and to an original vertex in the other model, so each corner has

two degrees of freedom, and each intrinsic face has six degrees of

freedom. The existence of an anchor vertex decreases the degrees

of freedom by two.

We use automatic differentiation to compute a local gradient

vector gf ∈ R6
and a HessianmatrixHf ∈ R6×6

per intrinsic face f ∈
F. These local quantities are accumulated in a global gradient vector

g ∈ R𝑛 and a Hessian matrix H ∈ R𝑛×𝑛 where 𝑛 = 2( |𝑉A | + |𝑉B |) in

the absence of anchor vertices. As in the previous work [Schmidt

et al. 2019, 2020], we make the global Hessian H positive definite

by clamping negative eigenvalues of the local Hessian Hf before
accumulating.

6.2 Overall scheme

We basically adopt the same second-order optimization scheme as

in the previous work [Schmidt et al. 2019, 2020]:

• We temporally smooth the gradient as ḡ =
∑

5

𝑖=0
2
−𝑖g𝑖 where

g𝑖 is the gradient of the configuration 𝑖 steps previous to

the current one. Temporally smoothed Hessian H̄ is obtained

analogously.

• We compute the descent direction d ∈ R𝑛 by solving

(H̄ +𝑤L (SL)⊤MSL)d = −ḡ (3)

where𝑤L is a weight for the Laplacian preconditioning, L is

the connection Laplacian, S is a block-diagonal matrix respon-

sible for making the tangent vector magnitudes comparable,

andM is the diagonal mass matrix.

• We perform a line search by evaluating the energy at x + 𝑠d
where x ∈ R𝑛 is the current configuration (i.e., barycentric

coordinates in the vertex images) and 𝑠 > 0 is the step size.

Because our variables are barycentric coordinates, all of the above

are realized through the concept of tangent vector transport; please

refer to Section 1 of the supplementary material of [Schmidt et al.

2020] for more details.

As opposed to the previous method which determined the feasi-

bility of a given step size by the emergence of flipped triangles, we

deem a given step size to be feasible if our CIT generation algorithm

succeeds with it. When determining the maximum step size 𝑠max

for the line search, we initialize it based on the current descent

direction vector (we set 𝑠max = 0.01/𝑑max where 𝑑max is the largest

length of the 2D descent direction vectors after being scaled from

the barycentric coordinates to the comparable lengths). If this initial

value turns out to be feasible, we enter the upward mode where

we multiply 𝑠max by 1.2 and see if the increased 𝑠max is infeasible.

Otherwise, we enter the downward mode where we divide 𝑠max by
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1.2 and see if the decreased 𝑠max is feasible. With 𝑠max determined,

we look for the optimal step size satisfying the Armijo condition as

was done in the previous method.

6.3 Dealing with local minima

Our method lacks one important feature that existed in the previous

method [Schmidt et al. 2020]: the metric regularization. It was used

in the initial few hundred steps to smooth out excess distortions in

the input maps, and we believe this contributed greatly to the ro-

bustness of their optimization algorithm. In our case, unfortunately,

we do not have anything that has the same effect as the metric

regularization, and thus our optimization algorithm can easily get

trapped by local minima, as discussed in Sec. 7.1.

We found empirically that when we get stuck in a local minimum,

it is often possible to make (sometimes great) progress if we switch

to the first-order optimization scheme. The reason we speculate is

that the energy landscape can sometimes get very non-smooth with

steep peaks and dents, making the quadratic approximation of the

second-order optimization scheme a poor fit. As such, we devised

the following simple workaround: we start with the second-order

mode, and when we get stuck in a local minimum, we switch to

the first-order mode and keep moving until we get stuck again in

another local minimum, then we switch back to the second-order

mode and repeat, until we get stuck in both schemes.

7 RESULTS

Implementation and setup. We implemented our algorithm using

geometry-central [Sharp et al. 2019a] that includes the reference

implementation of the signpost data structure [Sharp et al. 2019b].

We used an unsupported module in Eigen [Guennebaud et al. 2010]

for automatic differentiation. We ran all the experiments on Ryzen

9 3900X with 32GB of RAM running Ubuntu 20.04.1 LTS, and we

always used a single thread during the optimization. We normalized

the given input triangle meshes such that their total surface areas

equal to one, meaning that the best attainable energy is 4.0. As

opposed to the previous work, we did not impose any limit on the

number of the optimization steps and let the algorithm run until it

gets stuck (we stopped the optimization when the energy decrease

fell below 10
−5
).

7.1 Initial map generation

To create the initial vertex images, we used the reference imple-

mentation of HOT [Aigerman and Lipman 2016] and our own

implementation of Seamless Surface Mappings (SSM) [Aigerman

et al. 2015] (which we will release at https://github.com/kenshi84/

seamlesssurfmap) for genus 0 cases and high genus cases, respec-

tively. Because the success of our CIT generation/optimization algo-

rithm depends heavily on the quality of the initial map, we allowed

ourselves to use as many landmarks as necessary to produce good

quality maps.

While theoretical analysis of exact conditions for the success of

our CIT generation/optimization algorithm is left for future work,

empirically we found some tips on how to place landmarks in an

effective way. First, common to HOT and SSM, the mapping distor-

tion tends to concentrate near landmarks; in particular, a landmark,

A B A B

B on A A on B B on A A on B

A B A B

B on A A on B B on A A on B

(a) (c)(b) (d)

Fig. 13. Tips on placing landmarks. “B on A” visualizes the vertex image

𝜙B→A as a mesh (𝜙B→A (𝑉B ), 𝐸B, 𝐹B ) , and vice versa. Mapping distortion

concentrated near a landmark may appear as if the landmark was “pinched”

in a certain direction (a), and this may cause our CIT generation algorithm

to fail. This can be remedied by shifting the landmark toward the opposite

of the pinched direction (b). Placing just one landmark at the tip of an

elongated part may lead to too uneven distribution of mapped vertices (c),

which may cause our CIT optimization algorithm to get stuck in a local

minimum. To avoid this, we place a few more landmarks (d).

when mapped to the other surface, may appear as if it was “pinched”

in a certain direction (Fig. 13a). For a vertex image where this pinch-

ing effect is very strong, our CIT generation tends to fail. In such

cases, we slightly shift those problematic landmarks toward the

opposite of the pinched direction (Fig. 13b).

Second, when mapping an elongated part, if we placed just one

landmark at the tip of the part, its nearby vertices, when mapped to

the other surface, may often get severely concentrated or dispersed

(Fig. 13c). Even though our CIT generation algorithm often succeeds

with such a vertex image, our CIT optimization algorithm often gets

stuck in a local minimum, unable to distribute those vertices evenly.

To avoid this, we add a few more landmarks near the tip of the part

so that the vertex distribution becomes more even (Fig. 13d). See

the supplemental material for our choices of landmarks.

7.2 Comparison to Schmidt et al. [2020]

We ran our method on the dataset released by Schmidt et al. [2020]

and compared the final distortion energy (see Fig. 14 for the final

optimized maps). As shown in Table 1, our optimized distortion

energy is below that of the previous method [Schmidt et al. 2020]

on all but the Ant-Octopus and Pig-Armadillo cases. We believe

the lower values of our energy are due to the fact that Schmidt et al.

terminated optimization after a fixed number of steps, whereas we

let the optimizer run until it can make no more progress. The two

unsuccessful cases are of extremely non-isometric shape pairs, and

our algorithm quickly gets trapped by local minima.

7.3 Evaluation with Princeton Segmentation Dataset

Our method is inherently empirical, hence it is difficult to theoreti-

cally analyze how well it works in practice. To evaluate practical

utility of our method, we ran our CIT optimization on models in-

cluded in the Princeton 3D Mesh Segmentation Dataset [Chen et al.

2009]. The dataset consists of 19 categories, each containing 20 tri-

angle meshes. We randomly chose 5 pairs in each category, totaling

19 × 5 = 95 pairs. To make our experiment more meaningful, we

created some rules to filter out some clearly inappropriate pairs
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Fig. 14. Optimization results on the dataset of [Schmidt et al. 2020].

Table 1. The result statistics. #F refers to the total number of triangles of

the input triangle mesh pair, #N refers to the number of optimization steps

taken, T refers to the total time taken for the optimization, and E refers to

the energy of the optimized map. The energy of the map generated by the

previous method is shown in the rightmost column.

Case name #F #N T E [Schmidt et al. 2020]

Planes 25k 231 15.0h 4.35 4.69

Cow-Horse 10k 225 3.8h 4.73 5.28

Hands 32k 366 37.6h 4.35 4.83

Genus3 3k 440 2.9h 4.21 4.36

Genus5 8k 767 15.0h 4.49 4.74

Pretzel 12k 532 11.2h 5.25 5.53

Donut-Duck 24k 585 78.9h 4.68 4.77

Vase 10k 542 9.1h 4.60 5.00

Ant-Octopus 8k 4 1m 98.3 16.2

Pig-Armadillo 22k 370 19.9h 8.10 7.78

as well as extremely poor quality geometries. In some categories,

we also introduced some additional sub-categories within which

we formed pairs randomly, so that the problem setting becomes

more relevant. See the supplemental material for how we selected

the pairs. Note also that we often applied moderate degree of mesh

cleaning such as remeshing and reduction to eliminate erroneous

configurations such as edges of almost zero dihedral angles.

Fig. 15 shows a sample of our optimized surface mapping from

each category, indicating that our method indeed produces good

qualitymaps. See the supplementalmaterial for the detailed statistics

as well as all the images of the mappings of all pairs.

Of the 95 cases, 7 cases (41-59, 50-46, 53-54, 55-51, 124-139, 146-

156, 399-385), all genus 0, could not be handled by HOT (due to

flipped triangles detected during its LBFGS optimization), no matter

how we chose the landmarks. Out of the remaining 88 cases, we

had 7 cases (62-72, 128-136, 129-126, 130-134, 152-149, 220-201, 386-

397) where our CIT generation algorithm failed due to too extreme

distortion in the mapping generated by HOT (Fig. 16). For the two

cases 62-72 and 386-397, the shapes are widely different near the

tail region, while for the two cases 152-149 and 220-201, the over-

all shapes are very different. For the three cases 128-136, 129-126

and 130-134, the very thin and long tentacles of the octopuses are

arranged in some inconsistent manner.

Apart from these rather extreme cases, our CIT generation and

optimization algorithm succeeded on 81 models out of 88, giving us

success rate of 92%.

8 CONCLUSION AND FUTURE WORK

In this work, we showed that it is possible to consistently define,

given vertex images as input, images of edges and faces of one model

onto the other model using Compatible Intrinsic Triangulations

instead of constant-curvature metrics [Schmidt et al. 2020]. We

demonstrated that our CIT generation algorithm is robust enough

to be used within a second-order global optimization framework.

There are, however, a number of issues in our current approach.

First, there are no theoretical grounds supporting our CIT generation

algorithm which we devised only through empirical observations.

A thorough analysis of our problem setting is essential and can be a

key to improving the robustness when handling extremely distorted

vertex images.

One possible idea for improving our algorithm’s success rate is to

introduce additional vertices which are both inserted onMA andMB,

much like the Steiner vertices for 2D triangulation.We have not tried

it yet as it seemed to complicate our optimization framework due

to the number of variables changing at every step, especially when

considering the treatment of the temporal smoothing operator.

Another possible way of improvement would be to devise a mech-

anism that has the same effect as the metric regularization feature

in the previous work [Schmidt et al. 2019, 2020] which we believe

will make our optimization algorithm significantly more robust.

Finally, an interesting future direction would be to combine our

method with recent techniques for computing bijective maps be-

tween coarse and fine meshes such as [Jiang et al. 2020], in order

to enable a multi-resolution framework for the inter-surface map-

ping problem. This will benefit from the simplicity of our approach,

requiring only vertex images as input, in contrast to the previous

method which requires valid constant-curvature metrics in addition

to vertex images.
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Fig. 15. Sample optimized maps from our experiment on the Princeton Segmentation Dataset.
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A ALGORITHMS FOR MERGING INCONSISTENTLY

POSITIONED VERTICES

We match the given incompatible patch pair against each of the

five patterns shown in Fig. 5. Each pattern analyzes the given patch

pair and returns an edge pair (one on MA and the other on MB) that

meets certain conditions defined for that pattern. We then collapse

such a returned edge pair if it is collapsible. We give up on a patch

pair if none of the patterns return an edge pair for collapse.

Below, we use 𝝓A→B and 𝝓B→A to refer to the available corre-

spondences betweenMA’s elements andMB’s elements; e.g., vB =

𝝓A→B (vA) refers to B’s intrinsic vertex corresponding to A’s intrinsic
vertex (which is always available), and eA = 𝝓B→A (eB) refers to A’s
intrinsic edge corresponding to B’s intrinsic edge, assuming that the

edge is compatible.

Pattern 1. We first check if the patch contains no interior vertices.

We then look for vertices whose interior angle (i.e., the sum of corner

angles of adjacent faces in the patch) is larger than 𝜋 . If A’s patch
and B’s patch contain one such vertex each (referred to as vA and
vB, respectively), and if there exists an edge at A’s patch boundary

connecting vA and 𝝓B→A (vB), we return that edge.

Pattern 2. We first check if the patch contains just one interior

vertex vA and just one reversed face fA.We also check if vA is adjacent
to fA. Then we examine the two edges e1

A and e2

A adjacent to both

vA and fA. We return e1

A if |e1

A | + |𝝓A→B (e1

A) | < |e2

A | + |𝝓A→B (e2

A) |,
otherwise e2

A, with | · | representing the edge’s length.

Pattern 3. We first check if the patch contains even number of

interior vertices. Then, we look for an interior compatible edge pair

eA and eB whose adjacent two faces are both reversed. If the adjacent
vertices of eA and eB are all interior, we return eA. Otherwise, if eA
and eB are both flippable and have corresponding opposite vertices

which are both interior, we flip both of them and return eA.

Pattern 4. We first check if the patch contains no interior vertices.

We then look for an interior compatible edge pair eA and eB whose
adjacent vertices all have interior angles larger than 𝜋 . If there is

just one such edge pair in the patch, we return that edge.

Pattern 5. Wematch the given patch with the fixed mesh topology

shown in the figure; i.e., the patchmust have four faces, three interior

edges, six boundary edges, five boundary vertices, and one interior

vertex. We then identify the “hourglass” vertex; i.e., one that is

adjacent to four boundary edges. Then we return an edge between

the interior vertex and the hourglass vertex.
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